高等数学660---从205到213

本文探讨了三角函数积分中的角度与边的关系,涉及体积计算的圆周法,极坐标弧长公式,以及二倍角公式应用。还涵盖了求解质心的方法,线性方程组的求解技巧,以及二阶微分方程的解法。涉及技术包括积分转换、几何体体积、坐标系计算与线性代数。

1在三角函数的积分中,以角度为积分域完全可以转换为以边为积分域

在这里插入图片描述

2求旋转体的体积就是将其看成一个个的圆

在这里插入图片描述

3极坐标系下弧长公式等于根号下r的平方加上r的导数的平方

在这里插入图片描述

4 208题如何求质心,书上没有这个

三角函数的二倍角公式
cox方-sinx方=cox2x=2cox方-1=1-2sinx方
在这里插入图片描述

5电压平均值很奇怪

积分除以T就是电压平均值
在这里插入图片描述

6齐次方程求通解,线性无关则加,不同则减

在这里插入图片描述

7一阶线性方程求通解

在这里插入图片描述

8二阶线性常系数齐次微分方程有两个不同根r1r2,解为c1er1x和c2er2x

在这里插入图片描述

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值