线性代数---矩阵

本文探讨了矩阵的基本性质,如结合律、分配律,以及矩阵与行列式的区别。介绍了矩阵的加法、乘法以及伴随矩阵的概念,强调了矩阵可逆与行列式的关系,并讨论了矩阵求逆的计算方法。还涵盖了齐次方程组、对角矩阵、初等变换、分块矩阵和转置矩阵的逆等相关内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1矩阵满足结合律与分配律,但不满足交换律和消去律

在这里插入图片描述

2矩阵与行列式一个显著的区别就在于用k去矩阵,是矩阵里的每一个数都k;但是用k去行列式,是行列式里的一行或一列k

在这里插入图片描述
此处原理最普遍的应用是|kA|=k^n|A|

3矩阵里+3指的是加三倍的单位矩阵

在这里插入图片描述

4伴随矩阵最大的特点就是A21在A12的位置上

在这里插入图片描述
伴随矩阵其实就是A的n-1阶矩阵,如果A的秩为n,那么,那么n阶子式不为0,同样,n-1阶子式也不为0,那么伴随矩阵的秩就是n。如果矩阵的秩为n-1,那么至少n-1阶子式不为0,当矩阵的秩小于n-1时,A中所有n-1阶子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值