矩阵置0

    //给定一个m*n的矩阵,如果有一个元素是0,就把该元素所在的行和列上的元素全置为0,要求使用原地算法。
    //拓展:
    //你的算法有使用额外的空间吗?
    //一种比较直接的算法是利用O(m,n)的空间,但是这不是一个好的解法
    //使用简单的改进可以在O(m+n)的空间解决这个问题,但是还不是最佳的解法
    //你能在常量级的空间复杂度内解决这个问题吗?

    //遍历矩阵,如果cell[i][j] == 0 就将cell[i][0](首列) 和cell[0][j](首行)置为0
    //细节:第一行使用cell[0][0]标记,第一列使用isColZero标记
    //从第二行第二列开始遍历,如果cell[i][0] == 0或者cell[0][j] == 0,则cell[i][j] = 0;
    //检查cell[0][0]是否为0,是的话将第一行全部标记为0
    //再检查isCol是否为true,是的话,第一列全部标记为0
    public void setZeroes(int[][] matrix) {
        if (matrix == null || matrix.length == 0) {
            return;
        }

        int rows = matrix.length;
        int cols = matrix[0].length;
        boolean isColZero = false;
        for (int i = 0; i < rows; i++) {
            //先判断第一列
            if (!isColZero && matrix[i][0] == 0) {
                isColZero = true;
            }
            //从第二列开始,上面已经处理过第一列了
            for (int j = 1; j < cols; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                }
            }
        }

        //从第二行第二列开始遍历
        for (int i = 1; i < rows; i++) {
            for (int j = 1; j < cols; j++) {
                if (matrix[i][0] == 0 || matrix[0][j] ==0) {
                    matrix[i][j] = 0;
                }
            }
        }

        //需要先判断第一行以后再来判断第一列,不然可能第一列中将matrix[0][0]置为了0
        //如果第一行需要被标记
        if (matrix[0][0] == 0) {
            for (int i = 0; i < cols; i++) {
                matrix[0][i] = 0;
            }
        }

        //如果第一列需要被标记
        if (isColZero) {
            for (int i = 0; i < rows; i++) {
                matrix[i][0] = 0;
            }
        }
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值