//给定一个m*n的矩阵,如果有一个元素是0,就把该元素所在的行和列上的元素全置为0,要求使用原地算法。
//拓展:
//你的算法有使用额外的空间吗?
//一种比较直接的算法是利用O(m,n)的空间,但是这不是一个好的解法
//使用简单的改进可以在O(m+n)的空间解决这个问题,但是还不是最佳的解法
//你能在常量级的空间复杂度内解决这个问题吗?
//遍历矩阵,如果cell[i][j] == 0 就将cell[i][0](首列) 和cell[0][j](首行)置为0
//细节:第一行使用cell[0][0]标记,第一列使用isColZero标记
//从第二行第二列开始遍历,如果cell[i][0] == 0或者cell[0][j] == 0,则cell[i][j] = 0;
//检查cell[0][0]是否为0,是的话将第一行全部标记为0
//再检查isCol是否为true,是的话,第一列全部标记为0
public void setZeroes(int[][] matrix) {
if (matrix == null || matrix.length == 0) {
return;
}
int rows = matrix.length;
int cols = matrix[0].length;
boolean isColZero = false;
for (int i = 0; i < rows; i++) {
//先判断第一列
if (!isColZero && matrix[i][0] == 0) {
isColZero = true;
}
//从第二列开始,上面已经处理过第一列了
for (int j = 1; j < cols; j++) {
if (matrix[i][j] == 0) {
matrix[i][0] = 0;
matrix[0][j] = 0;
}
}
}
//从第二行第二列开始遍历
for (int i = 1; i < rows; i++) {
for (int j = 1; j < cols; j++) {
if (matrix[i][0] == 0 || matrix[0][j] ==0) {
matrix[i][j] = 0;
}
}
}
//需要先判断第一行以后再来判断第一列,不然可能第一列中将matrix[0][0]置为了0
//如果第一行需要被标记
if (matrix[0][0] == 0) {
for (int i = 0; i < cols; i++) {
matrix[0][i] = 0;
}
}
//如果第一列需要被标记
if (isColZero) {
for (int i = 0; i < rows; i++) {
matrix[i][0] = 0;
}
}
}
矩阵置0
最新推荐文章于 2023-10-17 16:46:44 发布