矩阵置0

    //给定一个m*n的矩阵,如果有一个元素是0,就把该元素所在的行和列上的元素全置为0,要求使用原地算法。
    //拓展:
    //你的算法有使用额外的空间吗?
    //一种比较直接的算法是利用O(m,n)的空间,但是这不是一个好的解法
    //使用简单的改进可以在O(m+n)的空间解决这个问题,但是还不是最佳的解法
    //你能在常量级的空间复杂度内解决这个问题吗?

    //遍历矩阵,如果cell[i][j] == 0 就将cell[i][0](首列) 和cell[0][j](首行)置为0
    //细节:第一行使用cell[0][0]标记,第一列使用isColZero标记
    //从第二行第二列开始遍历,如果cell[i][0] == 0或者cell[0][j] == 0,则cell[i][j] = 0;
    //检查cell[0][0]是否为0,是的话将第一行全部标记为0
    //再检查isCol是否为true,是的话,第一列全部标记为0
    public void setZeroes(int[][] matrix) {
        if (matrix == null || matrix.length == 0) {
            return;
        }

        int rows = matrix.length;
        int cols = matrix[0].length;
        boolean isColZero = false;
        for (int i = 0; i < rows; i++) {
            //先判断第一列
            if (!isColZero && matrix[i][0] == 0) {
                isColZero = true;
            }
            //从第二列开始,上面已经处理过第一列了
            for (int j = 1; j < cols; j++) {
                if (matrix[i][j] == 0) {
                    matrix[i][0] = 0;
                    matrix[0][j] = 0;
                }
            }
        }

        //从第二行第二列开始遍历
        for (int i = 1; i < rows; i++) {
            for (int j = 1; j < cols; j++) {
                if (matrix[i][0] == 0 || matrix[0][j] ==0) {
                    matrix[i][j] = 0;
                }
            }
        }

        //需要先判断第一行以后再来判断第一列,不然可能第一列中将matrix[0][0]置为了0
        //如果第一行需要被标记
        if (matrix[0][0] == 0) {
            for (int i = 0; i < cols; i++) {
                matrix[0][i] = 0;
            }
        }

        //如果第一列需要被标记
        if (isColZero) {
            for (int i = 0; i < rows; i++) {
                matrix[i][0] = 0;
            }
        }
    }
### 矩阵零算法的实现 #### 原始方法:使用标记数组 一种常见的解决方案是利用两个布尔型数组 `row` 和 `col` 来记录哪些行和列需要被设为零。具体来说,当发现某个元素为零时,就将对应的行索引和列索引在 `row` 和 `col` 中标记为真。最后再遍历整个矩阵,依据这两个数组中的标志位决定是否将对应位上的值改为零。 此方法虽然简单易懂,但它引入了额外的空间开销,其时间复杂度仍保持 O(m × n)[^2] ,而空间复杂度则上升至 O(m + n) [^2] 。以下是基于该思路的一个 Python 实现: ```python def setZeroes(matrix): if not matrix or not matrix[0]: return m, n = len(matrix), len(matrix[0]) rows = [False] * m cols = [False] * n for i in range(m): for j in range(n): if matrix[i][j] == 0: rows[i] = True cols[j] = True for i in range(m): for j in range(n): if rows[i] or cols[j]: matrix[i][j] = 0 ``` --- #### 改进方案:优化空间复杂度 为了减少辅助存储的需求,可以采用更高效的方式——即把某些特定条件下的行列当作临时缓冲区来保存状态信息。例如,在第一次扫描过程中遇到零的时候,不仅更新当前单元格的状态,还同时影响首行或者首列的相关部分作为指示器;之后再次迭代整个表格之前先单独处理好这些特殊的边界情况即可完成全部转换工作,并且整体过程只需要固定数量几个变量就够了,从而实现了真正的 **in-place** 修改目标数据结构而不依赖外部容器支持。 这种方法同样具备线性的运行效率 (O(m × n))[^3] , 同时成功降低了内存消耗到恒定级别(O(1)). 下面给出一段遵循上述逻辑编写的代码片段: ```python def setZeroesOptimized(matrix): if not matrix or not matrix[0]: return m, n = len(matrix), len(matrix[0]) firstRowHasZero = any(matrix[0][j] == 0 for j in range(n)) firstColHasZero = any(matrix[i][0] == 0 for i in range(m)) # Use the first row and column as markers. for i in range(1, m): for j in range(1, n): if matrix[i][j] == 0: matrix[i][0] = 0 matrix[0][j] = 0 # Set zeroes based on marker values except for the first row/column. for i in range(1, m): for j in range(1, n): if matrix[i][0] == 0 or matrix[0][j] == 0: matrix[i][j] = 0 # Finally handle the possible zeroing of the first row/column itself. if firstRowHasZero: for j in range(n): matrix[0][j] = 0 if firstColHasZero: for i in range(m): matrix[i][0] = 0 ``` --- ### 总结 两种不同的策略展示了如何有效地解决 LeetCode 第73题 “矩阵零”。前者易于理解和编码但牺牲了一些性能指标;后者尽管稍微增加了程序设计难度却显著提升了资源利用率。实际应用中可以根据具体情况权衡选用合适的版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值