搜索推广营销五步曲之五 效果评估

搜索推广营销五步曲之五 效果评估 - 百度推广 - 百度推广
    从前面的文章中我们了解到,客户进行搜索推广时如何进行目标确定,推广分析,方案制作,以及上线实施这这四个步骤。那么到底推广的效果怎么样呢?是否达到了前期设定的目标呢?今天我们就来说说搜索推广五步曲中效果评估这一步(如下图),让大家能够明确搜索推广的效果评估方法。

搜索推广营销五步曲之五 效果评估 - 百度推广 - 百度推广

    要进行效果评估需要搞清楚两件事:一、用来评估的指标是什么,是否有量化的数值。二、采集这些指标数值的工具都有哪些?
   一、用来评估的指标是什么,是否有量化的数值。
    定义了目标之后,我们需要找到一组指标来衡量目标的达成情况,这就是效果评估。打个比方,一个小朋友的目标是“长高”,那么他就可以选择“身高”作为效果评估的指标,效果怎么样呢,就要看看身高这个指标是否增长了,这种情况下其目标没有量化的数值;而如果他有个明确的目标是今年长到160厘米,那么效果评估时,就要看看身高这个指标是否达到160厘米了,这种情况下目标就是有量化的数值。
而企业进行搜索推广时,其效果评估指标又是什么呢?首先回顾一下前面讲过的搜索推广效果转化漏斗(如图2)。企业进行搜索推广时围绕获取订单这个大目标,需要经历三个阶段,在漏斗中对每个阶段都定义了对应的效果评估指标。在百度推广阶段其效果评估指标是展现量和点击量,在企业网站阶段其效果评估指标是访问量和咨询量,在线下销售阶段其评估指标是订单量。

搜索推广营销五步曲之五 效果评估 - 百度推广 - 百度推广

    这些评估指标有量化的数值吗?还是以小朋友为例,虽然每个小朋友都希望“长高”,但是由于个人身体素质,遗传基因,营养情况等因素的影响对于身高的目标值设定也是不同的,有人可能仅仅是希望长高就好了,有人则希望能够长到180厘米。企业在做搜索推广的时候由于行业情况,企业自身特点等因素的影响对于目标的设定也不尽相同。在推广初期由于没有经验,对于量化的目标值也很难科学合理的估算出来,因此将目标定义为效果衡量指标是否增长就可以了,随着推广经验的增长和账户不断地循环优化就可以将目标定义为效果衡量指标的具体数值了。
    举个自行车公司的例子,在推广之初,进行效果评估的时候,企业对于1000次的点击到底能带来多少个订单可能很难精确地统计出来,但是如果做百度推广之前,平均每天接到10个咨询电话,而现在平均每天能接到20个电话了,这就说明是有效果的。如果过一月再统计,平均每天的电话为25个了,那么就说明搜索推广的效果更显著了。
    而再经过一段时间的推广之后,通过不断地优化账户,积累数据,觉得一个月下来平均每天有30个电话是一个合理的目标,那么进行效果评估的时候就可以看实际的电话数有没有达到这个值来评估搜索推广的效果。
二、采集这些指标数值的工具都有哪些?
    测量身高可以用米尺作为工具,那么衡量搜索推广效果评估的指标我们都有哪些工具可以使用呢? 我们从搜索推广效果转化漏斗的三个阶段分别来说说进行效果评估的工具。
在百度推广阶段的效果衡量指标是展现量和点击量,这些指标我们可以通过统计报告来获得。系统为每个账户都提供了统计报告的功能。这些报告可以提供账户、推广计划、推广单元、关键词和创意等不同层级的数据,从中不但可以看到展现量和点击量的数据还能看到账户消费、点击率、千次展现消费等数据情况(如图3)。

搜索推广营销五步曲之五 效果评估 - 百度推广 - 百度推广
    在网站推广阶段的主要效果衡量指标是访问量和咨询量,访问量可以通过百度统计来获得,而咨询量可以通过百度商桥或设定专门的电话号码等方式来统计。
    在线下销售阶段的效果衡量指标是订单量,客户可以自行统计成交的订单量,并与目标值进行比较。
掌握了这些工具和方法,对展现量、点击量、访问量、咨询量,一直到订单量是多少就慢慢清楚了,调整与优化就有了基础,客服人员会和企业一起商议调整的方向,也可以设定具体的数值作为目标来评估搜索推广的效果了。
   好了,我们搜索推广五步曲的介绍到此就要告一段落了,但是请大家记住搜索推广是个循环优化的过程,需要在日常维护中不断循环五步曲的过程,找出提升空间,持续优化。搜索推广,没有最好只有更好。

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值