Python 数据分析包:pandas 基础

pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包

类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。pandas 约定俗成的导入方法如下:

?
1
2
from pandas  import Series,DataFrame
import pandas as pd

 

Series


Series 可以看做一个定长的有序字典。基本任意的一维数据都可以用来构造 Series 对象:

?
1
2
3
4
5
6
7
>>> s  = Series([ 1 , 2 , 3.0 , 'abc' ])
>>> s
0      1
1      2
2      3
3    abc
dtype:  object

虽然 dtype:object 可以包含多种基本数据类型,但总感觉会影响性能的样子,最好还是保持单纯的 dtype。

Series 对象包含两个主要的属性:index 和 values,分别为上例中左右两列。因为传给构造器的是一个列表,所以 index 的值是从 0 起递增的整数,如果传入的是一个类字典的键值对结构,就会生成 index-value 对应的 Series;或者在初始化的时候以关键字参数显式指定一个 index 对象:

?
1
2
3
4
5
6
7
8
9
10
11
>>> s  = Series(data = [ 1 , 3 , 5 , 7 ],index  = [ 'a' , 'b' , 'x' , 'y' ])
>>> s
a     1
b     3
x     5
y     7
dtype: int64
>>> s.index
Index([ 'a' 'b' 'x' 'y' ], dtype = 'object' )
>>> s.values
array([ 1 3 5 7 ], dtype = int64)

Series 对象的元素会严格依照给出的 index 构建,这意味着:如果 data 参数是有键值对的,那么只有 index 中含有的键会被使用;以及如果 data 中缺少响应的键,即使给出 NaN 值,这个键也会被添加。

注意 Series 的 index 和 values 的元素之间虽然存在对应关系,但这与字典的映射不同。index 和 values 实际仍为互相独立的 ndarray 数组,因此 Series 对象的性能完全 ok。

Series 这种使用键值对的数据结构最大的好处在于,Series 间进行算术运算时,index 会自动对齐。

另外,Series 对象和它的 index 都含有一个 name 属性:

?
1
2
3
4
5
6
7
8
9
>>> s.name  = 'a_series'
>>> s.index.name  = 'the_index'
>>> s
the_index
a             1
b             3
x             5
y             7
Name: a_series, dtype: int64

 

DataFrame


DataFrame 是一个表格型的数据结构,它含有一组有序的列(类似于 index),每列可以是不同的值类型(不像 ndarray 只能有一个 dtype)。基本上可以把 DataFrame 看成是共享同一个 index 的 Series 的集合。

DataFrame 的构造方法与 Series 类似,只不过可以同时接受多条一维数据源,每一条都会成为单独的一列:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
>>> data  = { 'state' :[ 'Ohino' , 'Ohino' , 'Ohino' , 'Nevada' , 'Nevada' ],
         'year' :[ 2000 , 2001 , 2002 , 2001 , 2002 ],
         'pop' :[ 1.5 , 1.7 , 3.6 , 2.4 , 2.9 ]}
>>> df  = DataFrame(data)
>>> df
    pop   state  year
0  1.5   Ohino   2000
1  1.7   Ohino   2001
2  3.6   Ohino   2002
3  2.4  Nevada   2001
4  2.9  Nevada   2002
 
[ 5 rows x  3 columns]

虽然参数 data 看起来是个字典,但字典的键并非充当 DataFrame 的 index 的角色,而是 Series 的 “name” 属性。这里生成的 index 仍是 “01234”。

完整的 DataFrame 构造器参数为:DataFrame(data=None,index=None,coloumns=None),columns 即 “name”:

?
1
2
3
4
5
6
7
8
9
10
11
>>> df  = DataFrame(data,index = [ 'one' , 'two' , 'three' , 'four' , 'five' ],
                columns = [ 'year' , 'state' , 'pop' , 'debt' ])
>>> df
        year   state  pop debt
one     2000   Ohino   1.5  NaN
two     2001   Ohino   1.7  NaN
three   2002   Ohino   3.6  NaN
four    2001  Nevada   2.4  NaN
five    2002  Nevada   2.9  NaN
 
[ 5 rows x  4 columns]

同样缺失值由 NaN 补上。看一下 index、columns 和 索引的类型:

?
1
2
3
4
5
6
>>> df.index
Index([ 'one' 'two' 'three' 'four' 'five' ], dtype = 'object' )
>>> df.columns
Index([ 'year' 'state' 'pop' 'debt' ], dtype = 'object' )
>>>  type (df[ 'debt' ])
< class 'pandas.core.series.Series' >

DataFrame 面向行和面向列的操作基本是平衡的,任意抽出一列都是 Series。

对象属性


重新索引

Series 对象的重新索引通过其 .reindex(index=None,**kwargs) 方法实现。**kwargs 中常用的参数有俩:method=None,fill_value=np.NaN

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
ser  = Series([ 4.5 , 7.2 , - 5.3 , 3.6 ],index = [ 'd' , 'b' , 'a' , 'c' ])
>>> a  = [ 'a' , 'b' , 'c' , 'd' , 'e' ]
>>> ser.reindex(a)
a    - 5.3
b     7.2
c     3.6
d     4.5
e    NaN
dtype: float64
>>> ser.reindex(a,fill_value = 0 )
a    - 5.3
b     7.2
c     3.6
d     4.5
e     0.0
dtype: float64
>>> ser.reindex(a,method = 'ffill' )
a    - 5.3
b     7.2
c     3.6
d     4.5
e     4.5
dtype: float64
>>> ser.reindex(a,fill_value = 0 ,method = 'ffill' )
a    - 5.3
b     7.2
c     3.6
d     4.5
e     4.5
dtype: float64

.reindex() 方法会返回一个新对象,其 index 严格遵循给出的参数,method:{'backfill', 'bfill', 'pad', 'ffill', None} 参数用于指定插值(填充)方式,当没有给出时,自动用fill_value 填充,默认为 NaN(ffill = pad,bfill = back fill,分别指插值时向前还是向后取值)

DataFrame 对象的重新索引方法为:.reindex(index=None,columns=None,**kwargs)。仅比 Series 多了一个可选的 columns 参数,用于给列索引。用法与上例类似,只不过插值方法 method 参数只能应用于,即轴 0。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
>>> state  = [ 'Texas' , 'Utha' , 'California' ]
>>> df.reindex(columns = state,method = 'ffill' )
     Texas  Utha  California
a       1   NaN            2
c       4   NaN            5 
d       7   NaN            8
 
[ 3 rows x  3 columns]
>>> df.reindex(index = [ 'a' , 'b' , 'c' , 'd' ],columns = state,method = 'ffill' )
    Texas  Utha  California
a       1   NaN            2
b       1   NaN            2
c       4   NaN            5
d       7   NaN            8
 
[ 4 rows x  3 columns]

不过 fill_value 依然对有效。聪明的小伙伴可能已经想到了,可不可以通过 df.T.reindex(index,method='**').T 这样的方式来实现在列上的插值呢,答案是可行的。另外要注意,使用 reindex(index,method='**') 的时候,index 必须是单调的,否则就会引发一个 ValueError: Must be monotonic for forward fill,比如上例中的最后一次调用,如果使用 index=['a','b','d','c'] 的话就不行。

删除指定轴上的项

即删除 Series 的元素或 DataFrame 的某一行(列)的意思,通过对象的 .drop(labels, axis=0) 方法:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
>>> ser
d     4.5
b     7.2
a    - 5.3
c     3.6
dtype: float64
>>> df
    Ohio  Texas  California
a      0      1           2
c      3      4           5
d      6      7           8
 
[ 3 rows x  3 columns]
>>> ser.drop( 'c' )
d     4.5
b     7.2
a    - 5.3
dtype: float64
>>> df.drop( 'a' )
    Ohio  Texas  California
c      3      4           5
d      6      7           8
 
[ 2 rows x  3 columns]
>>> df.drop([ 'Ohio' , 'Texas' ],axis = 1 )
    California
a            2
c            5
d            8
 
[ 3 rows x  1 columns]

.drop() 返回的是一个新对象,元对象不会被改变。

索引和切片

就像 Numpy,pandas 也支持通过 obj[::] 的方式进行索引和切片,以及通过布尔型数组进行过滤。

不过须要注意,因为 pandas 对象的 index 不限于整数,所以当使用非整数作为切片索引时,它是末端包含的。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
>>> foo
a     4.5
b     7.2
c    - 5.3
d     3.6
dtype: float64
>>> bar
0    4.5
1    7.2
2   - 5.3
3    3.6
dtype: float64
>>> foo[: 2 ]
a     4.5
b     7.2
dtype: float64
>>> bar[: 2 ]
0    4.5
1    7.2
dtype: float64
>>> foo[: 'c' ]
a     4.5
b     7.2
c    - 5.3
dtype: float64

这里 foo 和 bar 只有 index 不同——bar 的 index 是整数序列。可见当使用整数索引切片时,结果与 Python 列表或 Numpy 的默认状况相同;换成 'c' 这样的字符串索引时,结果就包含了这个边界元素。

另外一个特别之处在于 DataFrame 对象的索引方式,因为他有两个轴向(双重索引)。

可以这么理解:DataFrame 对象的标准切片语法为:.ix[::,::]。ix 对象可以接受两套切片,分别为行(axis=0)和列(axis=1)的方向:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> df
    Ohio  Texas  California
a      0      1           2
c      3      4           5
d      6      7           8
 
[ 3 rows x  3 columns]
>>> df.ix[: 2 ,: 2 ]
    Ohio  Texas
a      0      1
c      3      4
 
[ 2 rows x  2 columns]
>>> df.ix[ 'a' , 'Ohio' ]
0

而不使用 ix ,直接切的情况就特殊了:

  • 索引时,选取的是列
  • 切片时,选取的是行

这看起来有点不合逻辑,但作者解释说 “这种语法设定来源于实践”,我们信他。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
>>> df[ 'Ohio' ]
a     0
c     3
d     6
Name: Ohio, dtype: int32
>>> df[: 'c' ]
    Ohio  Texas  California
a      0      1           2
c      3      4           5
 
[ 2 rows x  3 columns]
>>> df[: 2 ]
    Ohio  Texas  California
a      0      1           2
c      3      4           5
 
[ 2 rows x  3 columns]

使用布尔型数组的情况,注意行与列的不同切法(列切法的 : 不能省):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
>>> df[ 'Texas' ]> = 4
a     False
c      True
d      True
Name: Texas, dtype:  bool
>>> df[df[ 'Texas' ]> = 4 ]
    Ohio  Texas  California
c      3      4           5
d      6      7           8
 
[ 2 rows x  3 columns]
>>> df.ix[:,df.ix[ 'c' ]> = 4 ]
    Texas  California
a       1           2
c       4           5
d       7           8
 
[ 3 rows x  2 columns]

 


算术运算和数据对齐

pandas 最重要的一个功能是,它可以对不同索引的对象进行算术运算。在将对象相加时,结果的索引取索引对的并集。自动的数据对齐在不重叠的索引处引入空值,默认为 NaN。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
>>> foo  = Series({ 'a' : 1 , 'b' : 2 })
>>> foo
a     1
b     2
dtype: int64
>>> bar  = Series({ 'b' : 3 , 'd' : 4 })
>>> bar
b     3
d     4
dtype: int64
>>> foo  + bar
a   NaN
b      5
d   NaN
dtype: float64

DataFrame 的对齐操作会同时发生在行和列上。

当不希望在运算结果中出现 NA 值时,可以使用前面 reindex 中提到过 fill_value 参数,不过为了传递这个参数,就需要使用对象的方法,而不是操作符:df1.add(df2,fill_value=0)。其他算术方法还有:sub(), div(), mul()

Series 和 DataFrame 之间的算术运算涉及广播,暂时先不讲。

函数应用和映射

Numpy 的 ufuncs(元素级数组方法)也可用于操作 pandas 对象。

当希望将函数应用到 DataFrame 对象的某一行或列时,可以使用 .apply(func, axis=0, args=(), **kwds) 方法。

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
= lambda x:x. max () - x. min ()
>>> df
    Ohio  Texas  California
a      0      1           2
c      3      4           5
d      6      7           8
 
[ 3 rows x  3 columns]
>>> df. apply (f)
Ohio           6
Texas          6
California     6
dtype: int64
>>> df. apply (f,axis = 1 )
a     2
c     2
d     2
dtype: int64

 

排序和排名

Series 的 sort_index(ascending=True) 方法可以对 index 进行排序操作,ascending 参数用于控制升序或降序,默认为升序。

若要按值对 Series 进行排序,当使用 .order() 方法,任何缺失值默认都会被放到 Series 的末尾。

在 DataFrame 上,.sort_index(axis=0, by=None, ascending=True) 方法多了一个轴向的选择参数与一个 by 参数,by 参数的作用是针对某一(些)进行排序(不能对行使用 by 参数):

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
>>> df.sort_index(by = 'Ohio' )
    Ohio  Texas  California
a      0      1           2
c      3      4           5
d      6      7           8
 
[ 3 rows x  3 columns]
>>> df.sort_index(by = [ 'California' , 'Texas' ])
    Ohio  Texas  California
a      0      1           2
c      3      4           5
d      6      7           8
 
[ 3 rows x  3 columns]
>>> df.sort_index(axis = 1 )
    California  Ohio  Texas
a            2     0      1
c            5     3      4
d            8     6      7
 
[ 3 rows x  3 columns]

排名(Series.rank(method='average', ascending=True))的作用与排序的不同之处在于,他会把对象的 values 替换成名次(从 1 到 n)。这时唯一的问题在于如何处理平级项,方法里的 method 参数就是起这个作用的,他有四个值可选:average, min, max, first

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
>>> ser = Series([ 3 , 2 , 0 , 3 ],index = list ( 'abcd' ))
>>> ser
a     3
b     2
c     0
d     3
dtype: int64
>>> ser.rank()
a     3.5
b     2.0
c     1.0
d     3.5
dtype: float64
>>> ser.rank(method = 'min' )
a     3
b     2
c     1
d     3
dtype: float64
>>> ser.rank(method = 'max' )
a     4
b     2
c     1
d     4
dtype: float64
>>> ser.rank(method = 'first' )
a     3
b     2
c     1
d     4
dtype: float64

注意在 ser[0]=ser[3] 这对平级项上,不同 method 参数表现出的不同名次。

DataFrame 的 .rank(axis=0, method='average', ascending=True) 方法多了个 axis 参数,可选择按行或列分别进行排名,暂时好像没有针对全部元素的排名方法。

统计方法

pandas 对象有一些统计方法。它们大部分都属于约简和汇总统计,用于从 Series 中提取单个值,或从 DataFrame 的行或列中提取一个 Series。

比如 DataFrame.mean(axis=0,skipna=True) 方法,当数据集中存在 NA 值时,这些值会被简单跳过,除非整个切片(行或列)全是 NA,如果不想这样,则可以通过 skipna=False 来禁用此功能:

?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
>>> df
     one  two
a   1.40  NaN
b   7.10 - 4.5
c   NaN  NaN
d   0.75 - 1.3
 
[ 4 rows x  2 columns]
>>> df.mean()
one     3.083333
two    - 2.900000
dtype: float64
>>> df.mean(axis = 1 )
a     1.400
b     1.300
c      NaN
d    - 0.275
dtype: float64
>>> df.mean(axis = 1 ,skipna = False )
a      NaN
b     1.300
c      NaN
d    - 0.275
dtype: float64

其他常用的统计方法有:

########################******************************************
count非 NA 值的数量
describe针对 Series 或 DF 的列计算汇总统计
min , max最小值和最大值
argmin , argmax最小值和最大值的索引位置(整数)
idxmin , idxmax最小值和最大值的索引值
quantile样本分位数(0 到 1)
sum求和
mean均值
median中位数
mad根据均值计算平均绝对离差
var方差
std标准差
skew样本值的偏度(三阶矩)
kurt样本值的峰度(四阶矩)
cumsum样本值的累计和
cummin , cummax样本值的累计最大值和累计最小值
cumprod样本值的累计积
diff计算一阶差分(对时间序列很有用)
pct_change计算百分数变化

 

处理缺失数据


pandas 中 NA 的主要表现为 np.nan,另外 Python 内建的 None 也会被当做 NA 处理。

处理 NA 的方法有四种:dropna , fillna , isnull , notnull 。

is(not)null

这一对方法对对象做元素级应用,然后返回一个布尔型数组,一般可用于布尔型索引。

dropna

对于一个 Series,dropna 返回一个仅含非空数据和索引值的 Series。

问题在于对 DataFrame 的处理方式,因为一旦 drop 的话,至少要丢掉一行(列)。这里的解决方式与前面类似,还是通过一个额外的参数:dropna(axis=0, how='any', thresh=None) ,how 参数可选的值为 any 或者 all。all 仅在切片元素全为 NA 时才抛弃该行(列)。另外一个有趣的参数是 thresh,该参数的类型为整数,它的作用是,比如 thresh=3,会在一行中至少有 3 个非 NA 值时将其保留。

fillna

fillna(value=None, method=None, axis=0) 中的 value 参数除了基本类型外,还可以使用字典,这样可以实现对不同的列填充不同的值。method 的用法与前面 .reindex() 方法相同,这里不再赘述。

inplace 参数


前面有个点一直没讲,结果整篇示例写下来发现还挺重要的。就是 Series 和 DataFrame 对象的方法中,凡是会对数组作出修改并返回一个新数组的,往往都有一个 replace=False 的可选参数。如果手动设定为 True,那么原数组就可以被替换。

转载:Python 数据分析包:pandas 基础

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值