http://pandas.pydata.org/pandas-docs/stable/basics.html?highlight=astype#selecting-columns-based-on-dtype
Pandas所支持的数据类型:
1. float
2. int
3. bool
4. datetime64[ns]
5. datetime64[ns, tz]
6. timedelta[ns]
7. category
8. object
默认的数据类型是int64,float64.
查看数据类型
- df.dtypes
- series.dtype
- get_dtype_counts()
如果一列中含有多个类型,则该列的类型会是object,同样字符串类型的列也会被当成object类型.
不同的数据类型也会被当成object,比如int32,float32
通过列类型选取列
select_dtypes()
DataFrame.select_dtypes(include=None, exclude=None)
参数
- include, exclude : list-like(传入想要查找的类型)
返回
- subset : DataFrame
Raises
- ValueError
- TypeError
转换列类型
DataFrame.astype$Series.astype
Series.astype(dtype, copy=True, errors=’raise’, **kwargs)
DataFrame.astype(dtype, copy=True, errors=’raise’, **kwargs)
参数
- dtype : data type, or dict of column name -> data type(传入列名和类型的字典)
- errors : {‘raise’, ‘ignore’}, default ‘raise’.(ignore,强制转换,这样不会报错,可以识别不同类型的数据)
- kwargs : keyword arguments to pass on to the constructor
返回
- casted : type of caller
Index.astype
Index.astype(dtype, copy=True)
参数
- dtype : numpy dtype or pandas type
- copy : bool, default True
其他转换方法
to_numeric() (conversion to numeric dtypes)
to_datetime() (conversion to datetime objects)
to_timedelta() (conversion to timedelta objects)