L1正则化和L2正则化

1. L1正则化和L2正则化:
  • L1正则化,又称Lasso Regression,是指权值向量w中各个元素的绝对值之和
  • L2正则化,又称Ridge Regression,是指权值向量w中各个元素的平方和,然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号)
  • 一般都会在正则化项之前添加一个系数,来调整正则比重
2. L1正则化和L2正则化的作用:
  • L1正则化可以让一部分特征的系数缩小到0,所以L1适用于特征之间有关联的情况可以产生稀疏权值矩阵(很多权重为0,则一些特征被过滤掉),即产生一个稀疏模型,可以用于特征选择。L1也可以防止过拟合
  • L2 让所有特征的系数都缩小,但是不会减为0,它会使优化求解稳定快速。所以L2适用于特征之间没有关联的情况
  • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合

3. 一些问题理解
L1正则化的稀疏作用如何理解?L2正则化为什么不会稀疏?

一个损失函数加了L1正则化,相当于给最优化问题加上一个约束,此时我们的任务变成在L1约束下求出​取最小值的解。换句话说,就是最优解不仅要满足L1也要满足L,在二维图上最优解就是 J等值线 和 L1的交点

  • 由于L1在二维图像上是位于原点的菱形,在w =0 的位置很可能和J等值线相交,故大概率使最优解中有很多w=0,从而造成稀疏。
  • 由于L2在二维图上是一个中心位于原点的圆,因此等值线与圆相交的点,比较小概率包含某维度的w=0的点,所以L2不是稀疏的
L2正则化为何可以防止过拟合?L1正则化在哪种情况下可以防止过拟合?

拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

  • 当给损失函数没有加正则化时,梯度更新公式为 : w : w − a ∗ 2 X T ( X w − y ) w: w - a * 2X^T(Xw-y) w:wa2XT(Xwy),当加上L2正则化后,梯度更新公式为 : w : w − a ∗ 2 X T ( X w − y ) − 2 λ α w w: w - a * 2X^T(Xw-y) -2\lambda \alpha w w:wa2XT(Xwy)2λαw,更新公式会在第一项给w添加一个小于1的因子,使得w往小的方向移动,这样可以防止过拟合.
  • L1正则化要能防止过拟合只需,将控制正则的超参数调小一点,这样菱形很小,等值线J与其交点就小,则可以防止过拟合。
    参考:机器学习中正则化项L1和L2的直观理解
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值