L1正则化和L2正则化在机器学习中的详细介绍及Python代码实现

本文详细介绍了L1正则化和L2正则化,包括它们的定义、作用、适用场景和数学原理,并提供了Python实现代码。L1正则化产生稀疏模型,适合特征选择,而L2正则化产生平滑模型,能有效处理多重共线性问题。
摘要由CSDN通过智能技术生成

1. 什么是L1正则化和L2正则化?
1.1. L1正则化
1.2. L2正则化
2. 正则化在训练过程中的作用
2.1 适用的问题和数据类型
2.1.1. L1正则化
2.1.2. L2正则化
3. L1正则化和L2正则化的数学原理
3.1. 带L1正则化的损失函数
3.2. 带L2正则化的损失函数
4. L1正则化和L2正则化的Python实现
4.1. L1正则化的Python实现
4.2. L2正则化的Python实现
5. 比较L1正则化和L2正则化

在机器学习中,过拟合是一个常见的问题。过拟合指的是模型在训练数据上表现良好,但在新数据上的表现较差。为了防止过拟合,我们通常会使用正则化技术。正则化通过向损失函数中添加一个惩罚项,迫使模型参数保持较小的值,从而减少过拟合。最常见的两种正则化技术是L1正则化和L2正则化。

什么是L1正则化和L2正则化?

L1正则化

L1正则化,又称为Lasso正则化,其惩罚项是模型参数的绝对值之和。数学上,可以表示为:

L1 Regularization term = λ ∑ i ∣ w i ∣ \text{L1 Regularization term} = \lambda \sum_{i} |w_i| L1 Regularization term=λiwi

其中, λ \lambda λ 是正则化强度的超参数, w i w_i wi 是模型的参数。L1正则化的一个重要特性是它会产生稀疏模型,即一些权重参数会被驱动为零,这对于特征选择非常有用。

L2正则化

L2正则化,又称为Ridge正则化,其惩罚项是模型参数的平方和。数学上,可以表示为:

L2 Regularization term = λ ∑ i w i 2 \text{L2 Regularization term} = \lambda \sum_{i} w_i^2 L2 Regularization term=λiwi2

同样地, λ \lambda λ是正则化强度的超参数, w i w_i wi 是模型的参数。L2正则化的一个重要特性是它会产生平滑的模型,使得所有权重参数都尽可能小,但不会完全为零。

正则化在训练过程中的作用

正则化发生在模型的训练阶段。具体来说,当我们最小化损失函数时,会同时最小化正则化项。这样可以控制模型的复杂度,防止过拟合。我们通过调整正则化强度参数 λ \lambda λ 来平衡数据拟合程度和正则化惩罚项。

适用的问题和数据类型

L1正则化

L1正则化适用于以下情况:

  • 特征选择:由于L1正则化会产生稀疏模型,它能自动选择特征,将不重要的特征权重变为零。
  • 高维数据:在特征数量远多于样本数量的情况下,L1正则化可以帮助筛选出重要特征。

L2正则化

L2正则化适用于以下情况:

  • 多重共线性:当特征之间存在高度相关性时,L2正则化可以通过平滑权重来减小这种影响。
  • 一般回归问题:在特征数量与样本数量差不多时,L2正则化可以有效地控制模型复杂度。

L1正则化和L2正则化的数学原理

假设我们有一个线性回归模型,损失函数是均方误差(MSE)。
不加入正则化项前的损失函数比可以表示为:

y ^ ( i ) = w i ∗ x i + b \hat{y}^{(i)} = w_i*x_i+b y^(i)=

  • 25
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值