Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
[code]
public class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
if(triangle.size()==0)return 0;
for(int i=triangle.size()-2;i>=0;i--)
{
List<Integer> row=triangle.get(i), next=triangle.get(i+1);
for(int j=0;j<row.size();j++)
{
row.set(j, row.get(j)+Math.min(next.get(j), next.get(j+1)));
}
}
return triangle.get(0).get(0);
}
}
[Thought]
bottom up,直接修改原数据结构不需要extra space。 如果不允许修改原结构,也只需要O(k)