本文是输出全部的组合数,递归输出全排列可参见:http://blog.csdn.net/prstaxy/article/details/8147029
比如有3个数,1、2、3,则它们的组合有1、2、3、12、13、23、123。当交换2个数字虽然得到2个不同的排列,但却是同一个组合。
如果输入n个字符,则这n个字符能构成长度为1的组合、长度为2的组合、....、长度为n的组合。在求n个字符的长度为m(1<=m<=n)的组合的时候,我们把这n个字符分成两部分:第一个字符和其余的所有字符。如果组合里包含第一个字符,则下一步在剩余的字符里选取m-1个字符;如果组合里不包含第一个字符,则下一步在剩余的n-1个字符里选取m个字符。也就是说,我们可以把求n个字符组成长度为m的组合的问题分解成两个子问题,分别求n-1个字符串中长度为m-1的组合,以及求n-1个字符的长度为m的组合。
#include <iostream>
#define MAX 20
using namespace std;
/*在长度为n顺序整型数据中选取长度为r的组合序列
* k1为当前已记录序列长度,k2为剩余待选取元素的起始位置 */
int rec[MAX];//记录组合序列
void combination_recursive(int arr[],int n,int r,int k1,int k2)
{
if (k1 == r)//输出当前序列
{
for (int i = 0; i < r; ++i)
cout << rec[i] << " ";
cout << endl;
}
else
for (int i = k2; i < n; ++i)
{
rec[k1] = arr[i]; //子序列赋值
combination_recursive(arr,n,r,k1+1,i+1);//递归回溯
}
}
void combination(int arr[],int n)//输出n个元素的全部组合
{
for(int i=0;i<=n;++i)
combination_recursive(arr,4,i,0,0);
}
int main()
{
int a[]={4,5,7,9};
combination(a,4);
return 0;
}
程序运行结果如图:
参考:
《剑指offer》 p157
http://www.bccn.net/Article/kfyy/cjj/jszl/200708/5927.html