Floyd算法

Floyd算法又称为弗洛伊德算法,插点法,是一种用于寻找给定的加权图中顶点间最短路径的算法。


核心思路


通过一个图的权值 矩阵求出它的每两点间的 最短路径 矩阵
从图的带权 邻接矩阵A=[a(i,j)] n×n开始, 递归地进行n次更新,即由矩阵D(0)=A,按一个公式,构造出矩阵D(1);又用同样地公式由D(1)构造出D(2);……;最后又用同样的公式由D(n-1)构造出 矩阵D(n)。 矩阵D(n)的i行j列元素便是i号顶点到j号顶点的 最短路径长度,称D(n)为图的 距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。
采用的是(松弛技术),对在i和j之间的所有其他点进行一次松弛。所以 时间复杂度为O(n^3);
其状态转移方程如下: map[i,j]:=min{map[i,k]+map[k,j],map[i,j]}
map[i,j]表示i到j的最短距离
K是穷举 i,j的断点
map[n,n]初值应该为0,或者按照题目意思来做。
当然,如果这条路没有通的话,还必须特殊处理,比如没有map[i,k]这条路

算法过程
1,从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。
2,对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比已知的路径更短。如果是更新它。
===
把图用邻接距阵G表示出来,如果从Vi到Vj有路可达,则G[i,j]=d,d表示该路的长度;否则G[i,j]=无穷大。
定义一个距阵D用来记录所插入点的信息,D[i,j]表示从Vi到Vj需要经过的点,初始化D[i,j]=j。
把各个顶点插入图中,比较插点后的距离与原来的距离,G[i,j] = min( G[i,j], G[i,k]+G[k,j] ),如果G[i,j]的值变小,则D[i,j]=k。
在G中包含有两点之间最短道路的信息,而在D中则包含了最短通路径的信息。
比如,要寻找从V5到V1的路径。根据D,假如D(5,1)=3则说明从V5到V1经过V3,路径为{V5,V3,V1},如果D(5,3)=3,说明V5与V3直接相连,如果D(3,1)=1,说明V3与V1直接相连。

时间复杂度
O(n^3)

优缺点分析
Floyd 算法适用于APSP(All Pairs Shortest Paths),是一种动态规划 算法,稠密图效果最佳,边权可正可负。此 算法简单有效,由于三重循环结构紧凑,对于稠密图,效率要高于执行|V|次 Dijkstra算法
优点:容易理解,可以算出任意两个节点之间的最短距离,代码编写简单
缺点: 时间复杂度比较高,不适合计算大量数据。

算法描述
a) 初始化:D[u,v]=A[u,v]
b) For k:=1 to n
For i:=1 to n
For j:=1 to n
If D[i,j]>D[i,k]+D[k,j] Then
D[I,j]:=D[I,k]+D[k,j];
c)  算法结束:D即为所有点对的最短路径矩阵



#define INFINITE 1000           // 最大值
#define MAX_VERTEX_COUNT 20   // 最大顶点个数
//
 
struct Graph
{
     int     arrArcs[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];    // 邻接矩阵
     int     nVertexCount;                                  // 顶点数量
     int     nArcCount;                                     // 边的数量
};
//


首先,我们写一个方法,用于读入图的数据:

void readGraphData( Graph *_pGraph )
{
     std::cout << "请输入顶点数量和边的数量: " ;
     std::cin >> _pGraph->nVertexCount;
     std::cin >> _pGraph->nArcCount;
 
     std::cout << "请输入邻接矩阵数据:" << std::endl;
     for ( int row = 0; row < _pGraph->nVertexCount; ++row )
     {
         for ( int col = 0; col < _pGraph->nVertexCount; ++col )
         {
             std::cin >> _pGraph->arrArcs[row][col];
         }
     }

}

接下来就是Floyd的核心算法
void floyd( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount )
{
     // 先初始化_arrPath
     for ( int i = 0; i < _nVertexCount; ++i )
     {
         for ( int j = 0; j < _nVertexCount; ++j )
         {
             _arrPath[i][j] = i;
         }
     }
     //
 
     for ( int k = 0; k < _nVertexCount; ++k )
     {
         for ( int i = 0; i < _nVertexCount; ++i )
         {
             for ( int j = 0; j < _nVertexCount; ++j )
             {
                 if ( _arrDis[i][k] + _arrDis[k][j] < _arrDis[i][j] )
                 {
                     // 找到更短路径
                     _arrDis[i][j] = _arrDis[i][k] + _arrDis[k][j];
 
                     _arrPath[i][j] = _arrPath[k][j];
                 }
             }
         }
     }
}

输出结果数据代码
void printResult( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount )
{
     std::cout << "Origin -> Dest   Distance    Path" << std::endl;
 
     for ( int i = 0; i < _nVertexCount; ++i )
     {
         for ( int j = 0; j < _nVertexCount; ++j )
         {
             if ( i != j )   // 节点不是自身
             {
                 std::cout << i+1 << " -> " << j+1 << "\t\t" ;
                 if ( INFINITE == _arrDis[i][j] )    // i -> j 不存在路径
                 {
                     std::cout << "INFINITE" << "\t\t" ;
                 }
                 else
                 {
                     std::cout << _arrDis[i][j] << "\t\t" ;
 
                     // 由于我们查询最短路径是从后往前插,因此我们把查询得到的节点
                     // 压入栈中,最后弹出以顺序输出结果。
                     std::stack< int > stackVertices;
                     int k = j;
                     
                     do
                     {
                         k = _arrPath[i][k];
                         stackVertices.push( k );
                     } while ( k != i );
                     //
 
                     std::cout << stackVertices.top()+1;
                     stackVertices.pop();
 
                     unsigned int nLength = stackVertices.size();
                     for ( unsigned int nIndex = 0; nIndex < nLength; ++nIndex )
                     {
                         std::cout << " -> " << stackVertices.top()+1;
                         stackVertices.pop();
                     }
 
                     std::cout << " -> " << j+1 << std::endl;
                 }
             }
         }
     }
}



int main( void )
{
     Graph myGraph;
     readGraphData( &myGraph );
     //
 
     int arrDis[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];
     int arrPath[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];
 
     // 先初始化arrDis
     for ( int i = 0; i < myGraph.nVertexCount; ++i )
     {
         for ( int j = 0; j < myGraph.nVertexCount; ++j )
         {
             arrDis[i][j] = myGraph.arrArcs[i][j];
         }
     }
 
     floyd( arrDis, arrPath, myGraph.nVertexCount );
     //
 
     printResult( arrDis, arrPath, myGraph.nVertexCount );
     //
 
     system ( "pause" );
     return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值