floyd算法(求任意两点间的最短路径)

floyd算法用于求任意两点间的最短路径,时间复杂度为O(n^3)

通过多次调用 Digkstar 算法同样能解决这个问题,时间复杂度同样为O(n^3),但floyd更简洁,利于编程。

floyd算法的思想: 

        floyd是用一个n*m的邻接表map[ n ][ m ]来存图,通过对map的处理使得矩阵map[ i ][ j ]存的是点i到点j的最短距离。这是算法是通过考虑最佳子路径来寻找最短路的。

        具体思想是:能否在点a,b之间加入一块跳板(即加入另外的点)使得a到b的距离缩短,如果可以的话更新a到b的距离,直到所有的点对都更新完。

        实现:

               for(k = 0; k < n; k++)

               for( i = 0; i  < n; i++)

               for( j = 0;  j < n; j++)

               if(map[ i ][ k ] + map[ k ][ j ] < map[ i ][ j ]) 

               map[ i ][ j ] =  map[i][k] + map[ k ][ j ];

        floyd可以通过记录“跳板”来记录路径:

               用矩阵pre[ i ][ j ]来保存走到j的前一个点,初始化的时候保存的都是起点(即i)。

               实现:

                         while( map[ i ][ j ].pre!=i )
                         {
                              cout<<pre[ i ][ j ];
                              k = pre[ i ][ j ];
                         }

        用floyd求最短距离并输出路径的具体代码

        

#include <iostream>
using namespace std;

const int INF = 99999999;

int n,m;//n:顶点数,m:边数

struct node
{
    int space;
    int pre;
}map[110][110];//建图,map[i][j].space表示点i到点j的最短距离,map[i][j].pre表示点i到点j的"跳板"

void input()
{
    int i,j;
    for(i = 0; i < n; i++)
    for(j = 0; j < n; j++)
    {
        if(i==j) map[i][j].space = 0;
        else map[i][j].space = INF;
        map[i][j].pre = i;
    }//初始化
    int a,b,x;
    for(i = 0; i < m; i++)
    {
        cin>>a>>b>>x;
        map[a][b].space = x;
    }//存图
}

void floyd()//floyd算法
{
    int k,i,j;
    for(k = 0; k < n; k++)
    for(i = 0; i < n; i++)
    for(j = 0; j < n; j++)
    {
        if(map[i][k].space!=INF && map[k][j].space!=INF && map[i][k].space + map[k][j].space < map[i][j].space)
        {
            map[i][j].space = map[i][k].space + map[k][j].space;
            map[i][j].pre = k;
        }
    }
}

void output()
{
    int i,j;
    for(i = 0; i < n; i++)
    for(j = 0; j < n; j++)
    {
        cout<<i<<"~"<<j<<"的最短距离:"<<map[i][j].space<<endl;
        int k = j;
        cout<<"路径:"<<i<<" ";
        while(map[i][k].pre!=i)
        {
            cout<<map[i][k].pre<<" ";
            k = map[i][k].pre;
        }
        cout<<j<<" \n";
    }
}

int main()
{
    while(1)
    {
        cin>>n>>m;
        if(n+m==0)break;
        input();
        floyd();
        output();
    }
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值