光学系统类别和成像的概念

一般用球面做成的单透镜,入射球面波通过透镜以后,出射波面就不再是严格的球面,而成一非球面。对应的光束,也就不再完全相交于一点,而成为一像散光束。

根据定义,光学系统第一个曲面以前的空间为“实物空间”,而第一个曲面以后得空间为“虚物空间”;系统最后一个曲面以后的空间称为“实像空间”而最后一个曲面以前的空间称为“虚像空间”。

u>2f,u=2f,2f>u>f,正透镜成实像

u<f虚像,u=f 不成像。

通常把物、像空间符合“点对应点,直线对应直线,平面对应平面”关系的像称为“理想像”,把成像符合上述关系的光学系统称为“理想光学系统”。

共轴理想光学系统的性质:

(1)系统的对称性:位于光轴上的物点对应的像点也必然位于光轴上;位于过光轴的某一截面内的物点,对应的像点必位于同一平面内;同时,过光轴的任意截面成像性质都是相同的。因此可以用一个过光轴的截面来代表一个共轴系统。

(2)位于垂直光轴的同一平面内的物所成的像,其几何形状和物完全相似。也就是说在整个物平面上无论什么位置,物和像的大小比例等于常数。

发光点理想成像条件——等光程条件(物点和像点间所有光线的光程都相等)

椭圆球面反射镜,和为常数;双曲面反射镜,差为常数;抛物面反射镜,对它的焦点和无限远轴上点满足等光程条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值