几何光学基本原理

文章探讨了光在均匀介质中的传播规律,包括马吕斯定律和费马原理,以及几何光学在实际应用中的误差分析。指出反射棱镜的应用可以减少光能损失。讨论了光阑对几何光学精度的影响,强调了波长和光束限制对误差的影响,以及何时需要转向物理光学方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

马吕斯定律:光线束在各项同性均匀介质中传播时,始终保持与波面的正交性,且入射波面与出射波面对应点之间光程为定值。

费马原理:光从一点传播到另一点期间无论经过多少次的折射和反射,其光程为极值;光是沿着光程为极值(极大、极小或常亮)的路径传播的。

由于实际光线的光程为极值,因此,和实际光线间隔为一阶微量的其他路线对应的光程,与实际光线光程之差为二阶或高阶微分。

反射棱镜代替镀反光膜的反射镜,减少光能损失。一般反射膜不能使光线全部反射,大约有10%的光线将被吸收,且反光膜容易变质和损失。如果有的光线入射角小于临界角,则反射面上仍需镀反光膜。

几何光学的一切结论,都是建立在把光看做光线这一基本假设基础上,而光线实际上是电磁波,因此由几何光学导出的结论,都有一定误差。因此,建立几何光学误差和应用范围的概念具有重要的实际意义。

各方向不受限制地均匀发光的情形,几何光学准确地说明了光的传播现象。

当光束进行限制以后,几何光学具有Uk/2的误差。

(1)要使几何光学误差减少,则限制光束的光阑口径应该足够大。因为如果光阑口径很小,就不能在波面上作出足够数量的半波带,会使Uk变得很小。

实际光学仪器中,光阑的口径都比较大,所以几何光学能够作为设计光学仪器的基础。

(2)对聚交于一点或近似聚交于一点的光束,它对应的波面为一个球面或近似为一个球面,光束的聚交点就是球心。对于这样的光束,在光束聚交点A"附近,即使光阑的口径很大,也分不出足够数量的半波带,而且对应的衍射角也很小,Uk不可能变得很小,几何光学的误差很大,不能应用,必须采用物理光学的方法。

(3)在一定口径范围内,波长越小,可以分出的半波带越多,几何光学的误差越小。实际上当波长趋近于0时,即可由物理光学导出应用光学的基本定律。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值