马吕斯定律:光线束在各项同性均匀介质中传播时,始终保持与波面的正交性,且入射波面与出射波面对应点之间光程为定值。
费马原理:光从一点传播到另一点期间无论经过多少次的折射和反射,其光程为极值;光是沿着光程为极值(极大、极小或常亮)的路径传播的。
由于实际光线的光程为极值,因此,和实际光线间隔为一阶微量的其他路线对应的光程,与实际光线光程之差为二阶或高阶微分。
反射棱镜代替镀反光膜的反射镜,减少光能损失。一般反射膜不能使光线全部反射,大约有10%的光线将被吸收,且反光膜容易变质和损失。如果有的光线入射角小于临界角,则反射面上仍需镀反光膜。
几何光学的一切结论,都是建立在把光看做光线这一基本假设基础上,而光线实际上是电磁波,因此由几何光学导出的结论,都有一定误差。因此,建立几何光学误差和应用范围的概念具有重要的实际意义。
各方向不受限制地均匀发光的情形,几何光学准确地说明了光的传播现象。
当光束进行限制以后,几何光学具有Uk/2的误差。
(1)要使几何光学误差减少,则限制光束的光阑口径应该足够大。因为如果光阑口径很小,就不能在波面上作出足够数量的半波带,会使Uk变得很小。
实际光学仪器中,光阑的口径都比较大,所以几何光学能够作为设计光学仪器的基础。
(2)对聚交于一点或近似聚交于一点的光束,它对应的波面为一个球面或近似为一个球面,光束的聚交点就是球心。对于这样的光束,在光束聚交点A"附近,即使光阑的口径很大,也分不出足够数量的半波带,而且对应的衍射角也很小,Uk不可能变得很小,几何光学的误差很大,不能应用,必须采用物理光学的方法。
(3)在一定口径范围内,波长越小,可以分出的半波带越多,几何光学的误差越小。实际上当波长趋近于0时,即可由物理光学导出应用光学的基本定律。