问题描述:
在一个长方体盒子里,有N(N≤6)个点,在其中任何一个点上放一个很小的气球,那么这个气球会一直膨胀,直到接触到其他气球或者盒子的边界。必须等一个气球扩展完毕才能扩展下一个气球。问按照怎样的顺序在这N个点上放置气球,才使放置完毕后所有气球占据的总体积最大。
分析
-
气球膨胀的空间:每个气球膨胀到与盒子边界或其他气球的接触为止,它占据的空间和其膨胀半径的大小有关。如果气球膨胀到边界或另一个气球时,它会停下,因此膨胀的顺序会影响每个气球的最终半径大小。
-
决策问题:选择一个顺序来放置气球,尽量让前面放置的气球不会阻碍后续气球的膨胀。
-
策略选择:
-
贪心法:贪心策略的核心是每次选择一个最优的局部解,期望最后得到全局最优解。可以尝试根据每个气球的位置,选择放置那些能够占据更多膨胀空间的气球。
-
排序策略:可以通过计算每个点到盒子边界的距离(或到其他气球的距离),来决定气球的膨胀顺序。放置距离边界较远的点会导致膨胀过程中其他气球有更多的空间。
-
解法步骤
计算每个点的膨胀空间:对于每个点,计算它到盒子边界的距离,并根据这些距离排序。较远的点可以先放置,因为它们膨胀时占据的空间不会太多地干扰后续气球的膨胀。
贪心放置顺序:先放置膨胀空间较大的气球(即离盒子边界较远的气球),后放置空间较小的气球。
动态计算膨胀影响:在选择顺序时,每放置一个气球,都要考虑它对剩余气球的膨胀空间的影响。放置后气球之间的碰撞会限制其他气球的膨胀。
代码实现
假设盒子的尺寸为 L*W*H,每个点的位置为 (xi,yi,zi),计算出每个点到边界的最短距离。然后按照这个距离从大到小排序,依次放置气球。
import math
# 计算一个点到盒子边界的最短距离
def min_distance_to_boundary(x, y, z, L, W, H):
return min(x, L - x, y, W - y, z, H - z)
# 计算气球膨胀后的体积
def balloon_volume(radius):
return (4 / 3) * math.pi * radius**3
def maximize_balloon_volume(points, L, W, H):
# 计算每个点到边界的最短距离
distances = []
for i, (x, y, z) in enumerate(points):
dist = min_distance_to_boundary(x, y, z, L, W, H)
distances.append((dist, i)) # (距离, 点的索引)
# 按照距离从大到小排序
distances.sort(reverse=True, key=lambda x: x[0])
# 按顺序放置气球,计算体积
total_volume = 0
for dist, index in distances:
# 每个气球的半径是它到边界的距离
radius = dist
total_volume += balloon_volume(radius)
return total_volume
# 示例数据
L, W, H = 10, 8, 6 # 盒子的尺寸
points = [
(2, 3, 1), # 第一个点的坐标
(7, 5, 2), # 第二个点的坐标
(6, 6, 4), # 第三个点的坐标
(3, 1, 5), # 第四个点的坐标
(8, 2, 3), # 第五个点的坐标
(4, 4, 4) # 第六个点的坐标
]
# 计算最大总体积
max_volume = maximize_balloon_volume(points, L, W, H)
print(f"所有气球占据的最大总体积为: {max_volume:.2f}")