- 博客(20)
- 收藏
- 关注
原创 深度学习面试八股文(3)—— 目标检测专题
目标检测 (Object Detection) 与 图像分类 (Image Classification) 有什么本质区别?答案:分类:判断图像中“有什么”,通常假设图像主体只有一个,输出类别概率。检测:不仅要判断“有什么”,还要定位“在哪里”。输出包含Bounding Box (边界框)的坐标xywhxywh和对应的类别概率。难点:多尺度 (物体大小不一)、遮挡、背景干扰、密集排列。“检测任务其实是分类 (Classification)和回归 (Regression)
2025-12-17 09:30:00
370
原创 深度学习面试八股文(2)——训练
利用自己构建的agent总结的算法面试八股,会从机器学习,深度学习一直到大语言模型,多模态大模型,llm发展到现在,在这个领域已经基本没有幻觉现象了,是个不错的复习手段。持续更新…
2025-12-13 23:42:38
664
原创 全面解析DeepSeek算法细节(1) —— 混合专家(Mixture of Expert, MoE)
DeepSeek系列模型算法细节剖析之混合专家(MoE)
2025-02-26 23:29:26
3420
原创 DeepSeek发布新的注意力机制NSA(论文详解)
长上下文建模对于下一代语言模型至关重要,然而标准注意力机制的高计算成本带来了巨大的计算挑战。稀疏注意力为在保持模型能力的同时提高效率提供了一个有前景的方向。我们提出了原生可训练稀疏注意力机制(NSA),它将算法创新与硬件适配优化相结合,以实现高效的长上下文建模。NSA采用动态分层稀疏策略,将粗粒度token压缩与细粒度token选择相结合,既保留了全局上下文感知,又保证了局部精度。我们的方法通过两项关键创新推进了稀疏注意力设计:
2025-02-19 22:24:08
3116
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅