第27节 数组参数和指针参数分析

-------------------------------------资源来源于网络,仅供自学使用,如有侵权,联系我必删.

第一:

为什么C 语言中的数组参数退化为指针

 

退化的意义:

 C 语言中只会以值拷贝的方式传递参数

#include <stdio.h>
#include <malloc.h>

void f(int* p)
{
	*p = 5;
} 

int main()
{
    int i = 0;

    f(&i);//取地址,传址调用

    printf("i = %d\n",i);
}
#include <stdio.h>
#include <malloc.h>

void f(int* p)
{
	*p = 5;
} 

int main()
{
    int i = 0;
    int* pI = &i;
    
    f(pI);//传值调用

    printf("i = %d\n",i);
}

 C 语言以高效为最初设计目标 , 在函数传递的时候如果拷贝整个数组执行效率将大大下降.

 

第二

二维数组参数

? 二维数组参数同样存在退化的问题
   二维数组可以看做是一维数组
   二维数组中的每个元素是一维数组
?二维数组参数中第一维的参数可以省略

          void f(int a[5]);   <==>  void f(int a[]);      <==>   void f(int* a);

      void g(int a[3][3]); <==>  void g(int a[][3]); <==> void g(int (*a)[3]);

 

第三:

           等价关系

 

第四:

注意事项

? C 语言中无法向一个函数传递任意的多维数组
?  为了提供正确的指针运算 , 必须提供除第一维之外的所有维长度
?  限制
     一维数组参数 –  必须提供一个标示数组结束位置的长度信息
     二维数组参数 –  不能直接传递给函数
     三维或更多维数组参数 – 无法使用

 

第五:

  传递与访问二维数组的方式

#include <stdio.h>

void access(int a[][3], int row) //a[][3] = (*a)[3]
{
    int col = sizeof(*a) / sizeof(int);//重点:每一列的个数可以这样算出来!!!!
    int i = 0;
    int j = 0;
    
    printf("sizeof(a) = %d\n", sizeof(a));
    
    //二次循环访问二位数组
    for(i=0; i<row; i++)
    {
        for(j=0; j<col; j++)
        {
            printf("%d\n", a[i][j]);
        }
    }
}

int main()
{
    int a[3][3] = {{0, 1, 2}, {3, 4, 5}, {6, 7, 8}};
    
    access(a, 3);
}

 

以下是用C++实现固定维度矩阵基本运算的示例代码: ```c++ #include <iostream> using namespace std; const int ROW = 6; const int COL = 6; // 矩阵加法 void matrix_addition(int a[][COL], int b[][COL], int c[][COL]) { for(int i = 0; i < ROW; i++) { for(int j = 0; j < COL; j++) { c[i][j] = a[i][j] + b[i][j]; } } } // 矩阵减法 void matrix_subtraction(int a[][COL], int b[][COL], int c[][COL]) { for(int i = 0; i < ROW; i++) { for(int j = 0; j < COL; j++) { c[i][j] = a[i][j] - b[i][j]; } } } // 矩阵乘法 void matrix_multiplication(int a[][COL], int b[][COL], int c[][COL]) { for(int i = 0; i < ROW; i++) { for(int j = 0; j < COL; j++) { c[i][j] = 0; for(int k = 0; k < ROW; k++) { c[i][j] += a[i][k] * b[k][j]; } } } } // 矩阵转置 void matrix_transpose(int a[][COL], int b[][ROW]) { for(int i = 0; i < ROW; i++) { for(int j = 0; j < COL; j++) { b[j][i] = a[i][j]; } } } // 输出矩阵 void print_matrix(int a[][COL]) { for(int i = 0; i < ROW; i++) { for(int j = 0; j < COL; j++) { cout << a[i][j] << " "; } cout << endl; } } int main() { int a[ROW][COL] = {{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11, 12}, {13, 14, 15, 16, 17, 18}, {19, 20, 21, 22, 23, 24}, {25, 26, 27, 28, 29, 30}, {31, 32, 33, 34, 35, 36}}; int b[ROW][COL] = {{6, 5, 4, 3, 2, 1}, {12, 11, 10, 9, 8, 7}, {18, 17, 16, 15, 14, 13}, {24, 23, 22, 21, 20, 19}, {30, 29, 28, 27, 26, 25}, {36, 35, 34, 33, 32, 31}}; int c[ROW][COL] = {}; int d[COL][ROW] = {}; // 矩阵加法 matrix_addition(a, b, c); cout << "a + b = " << endl; print_matrix(c); // 矩阵减法 matrix_subtraction(a, b, c); cout << "a - b = " << endl; print_matrix(c); // 矩阵乘法 matrix_multiplication(a, b, c); cout << "a * b = " << endl; print_matrix(c); // 矩阵转置 matrix_transpose(a, d); cout << "a的转置 = " << endl; print_matrix(d); return 0; } ``` 在上述代码中,首先定义了矩阵的行列数,然后实现了矩阵加法、矩阵减法、矩阵乘法、矩阵转置等基本运算的函数。最后在主函数中定义了两个6×6的矩阵a和b,以及一个6×6的结果矩阵c以及一个6×6的转置矩阵d。分别调用矩阵加法、矩阵减法、矩阵乘法、矩阵转置函数,并输出结果矩阵。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值