文章目录
动态规划是什么?
-
动态规划问题的一般形式就是求最值,求解动态规划的核心问题是穷举。
-
动态规划的穷举有点特别,因为这类问题存在「重叠子问题」,如果暴力穷举的话效率会极其低下,所以需要「备忘录」或者「DP table」来优化穷举过程,避免不必要的计算。
-
动态规划问题一定会具备「最优子结构」,才能通过子问题的最值得到原问题的最值。
-
虽然动态规划的核心思想就是穷举求最值,但只有列出**正确的「状态转移方程」**才能正确地穷举
509. 斐波那契数
题目描述
斐波那契数,通常用 F(n)
表示,形成的序列称为斐波那契数列。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0, F(1) = 1 F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
给定 N
,计算 F(N)
。
示例 1:
输入:2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1.
示例 2:
输入:3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2.
示例 3:
输入:4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3.
提示:
- 0 ≤
N
≤ 30
1.暴力递归
int fib(int N) {
if (N == 1 || N == 2) return 1;
return fib(N - 1) + fib(N - 2);
}
-
递归算法的时间复杂度怎么计算?就是用子问题个数乘以解决一个子问题需要的时间。
-
首先计算子问题个数,即递归树中节点的总数。显然二叉树节点总数为指数级别,所以子问题个数为 O(2^n)。
-
然后计算解决一个子问题的时间,在本算法中,没有循环,只有
f(n - 1) + f(n - 2)
一个加法操作,时间为 O(1)。 -
所以,这个算法的时间复杂度为二者相乘,即 O(2^n),指数级别,爆炸。
2.带备忘录的递归解法
- 我们可以造一个「备忘录」,每次算出某个子问题的答案后别急着返回,先记到「备忘录」里再返回;每次遇到一个子问题先去「备忘录」里查一查,如果发现之前已经解决过这个问题了,直接把答案拿出来用,不要再耗时去计算了。
int fib(int N) {
if (N < 1) return 0;
// 备忘录全初始化为 0
vector<int> memo(N + 1, 0);
// 进行带备忘录的递归
return helper(memo, N);
}
int helper(vector<int>& memo, int n) {
// base case
if (n == 1 || n == 2) return 1;
// 已经计算过
if (memo[n] != 0) return memo[n];
memo[n] = helper(memo, n - 1) + helper(memo, n - 2);
return memo[n];
}
- 实际上,带「备忘录」的递归算法,把一棵存在巨量冗余的递归树通过「剪枝」,改造成了一幅不存在冗余的递归图,极大减少了子问题(即递归图中节点)的个数。
3.DP 数组的迭代解法
- 我们可以把这个「备忘录」独立出来成为一张表,就叫做 DP table,完成自底向上的推算
int fib(int N) {
if (N < 1) return 0;
if (N == 1 || N == 2) return 1;
vector<int> dp(N + 1, 0);
// base case
dp[1] = dp[2] = 1;
for (int i = 3; i <= N; i++)
dp[i] = dp[i - 1] + dp[i - 2];
return dp[N];
}
总结
-
上面的几种解法中的所有操作,例如
return f(n - 1) + f(n - 2)
,dp[i] = dp[i - 1] + dp[i - 2]
,以及对备忘录或 DP table 的初始化操作。都是围绕f(n) = f(n-1)+f(n-2)
这个方程式的不同表现形式。可见列出「状态转移方程」的重要性,它是解决问题的核心。而且很容易发现,其实状态转移方程直接代表着暴力解法。 -
只要写出暴力解,优化方法无非是用备忘录或者 DP table,再无奥妙可言。备忘录和DP数组分别代表的是自顶向下和自底向上的顺序
322. 零钱兑换
题目描述
给定不同面额的硬币
coins和一个总金额
amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回
-1。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins =[1, 2, 5]
, amount =11
输出:3
解释:11 = 5 + 5 + 1
示例 2:
输入:coins =[2]
, amount =3
输出:-1
示例 3:
输入:coins = [1], amount = 0 输出:0
示例 4:
输入:coins = [1], amount = 1 输出:1
示例 5:
输入:coins = [1], amount = 2 输出:2
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 2<sup>31</sup> - 1
0 <= amount <= 10<sup>4</sup>
分析
- 首先明确这是动态规划问题,因为符合最优子结构
- 要符合「最优子结构」,子问题间必须互相独立
暴力递归(超时)
# 伪码框架
def coinChange(coins: List[int], amount: int):
# 定义:要凑出金额 n,至少要 dp(n) 个硬币
def dp(n):
# 做选择,选择需要硬币最少的那个结果
for coin in coins:
res = min(res, 1 + dp(n - coin))
return res
# 题目要求的最终结果是 dp(amount)
return dp(amount)
1、确定 base case,这个很简单,显然目标金额 amount
为 0 时算法返回 0,因为不需要任何硬币就已经凑出目标金额了。
2、确定「状态」,也就是原问题和子问题中会变化的变量。由于硬币数量无限,硬币的面额也是题目给定的,只有目标金额会不断地向 base case 靠近,所以唯一的「状态」就是目标金额 amount
。
3、确定「选择」,也就是导致「状态」产生变化的行为。目标金额为什么变化呢,因为你在选择硬币,你每选择一枚硬币,就相当于减少了目标金额。所以说所有硬币的面值,就是你的「选择」。
4、明确 dp
函数/数组的定义。我们这里讲的是自顶向下的解法,所以会有一个递归的 dp
函数,一般来说函数的参数就是状态转移中会变化的量,也就是上面说到的「状态」;函数的返回值就是题目要求我们计算的量。就本题来说,状态只有一个,即「目标金额」,题目要求我们计算凑出目标金额所需的最少硬币数量。所以我们可以这样定义 dp
函数:
带备忘录的递归(超时)
PS:leetcode全局变量要慎用
class Solution {
public int coinChange(int[] coins, int amount) {
int memo[] = new int[amount+1];
return dp(memo,coins,amount);
}
public static int dp(int[] memo,int[] coins,int n){
if(n<0){
return -1;
}
if(memo[n] != 0){
return memo[n];
}
if(n==0){
return 0;
}
int subproblem;
int res = Integer.MAX_VALUE;
for (int coin : coins) {
subproblem = dp(memo,coins, n - coin);
if (subproblem == -1) {
continue;
}
res = Integer.min(res, 1 + subproblem);
}
if(res!=Integer.MAX_VALUE){
memo[n]= res;
return memo[n];
}else{
return -1;
}
}
}
- 很显然「备忘录」大大减少了子问题数,完全消除了子问题的冗余,所以子问题总数不会超过⾦额数 n,即子问题数目为 O(n)。处理⼀个子问题的时间不变,仍是 O(k),所以总的时间复杂度是 O(kn)。
DP 数组的迭代解法
int coinChange(vector<int>& coins, int amount) {
// 数组大小为 amount + 1,初始值也为 amount + 1
vector<int> dp(amount + 1, amount + 1);
// base case
dp[0] = 0;
// 外层 for 循环在遍历所有状态的所有取值
for (int i = 0; i < dp.size(); i++) {
// 内层 for 循环在求所有选择的最小值
for (int coin : coins) {
// 子问题无解,跳过
if (i - coin < 0) continue;
dp[i] = min(dp[i], 1 + dp[i - coin]);
}
}
return (dp[amount] == amount + 1) ? -1 : dp[amount];
}
- 我们也可以自底向上使用 dp table 来消除重叠子问题,关于「状态」「选择」和 base case 与之前没有区别,
dp
数组的定义和刚才dp
函数类似,也是把「状态」,也就是目标金额作为变量。不过dp
函数体现在函数参数,而dp
数组体现在数组索引:
归纳
-
第一个斐波那契数列的问题,解释了如何通过「备忘录」或者「dp table」的方法来优化递归树,并且明确了这两种方法本质上是一样的,只是自顶向下和自底向上的不同而已。
-
第二个凑零钱的问题,展示了如何流程化确定「状态转移方程」,只要通过状态转移方程写出暴力递归解,剩下的也就是优化递归树,消除重叠子问题而已。