1,如何计算零空间
求解AX=0的解
用消元的方法,一个方程减去另一个方程,这里改变的是列空间,而零空间保持不变.
本例中主元的个数为2,这个数字被称为矩阵的秩.主列也就是主元所在的列.其余的列为自由列.
自由列表示可以自由地给该列未知数赋值,可以取任意数字,都可以是方程组地解.这就是通解中的自由变量,我们通常给他0或1两个值.方程组通过自由列赋予的值,求出主列的值,从而构成完整解.
完整的解或者说0空间如下图:
总结:至此我们得到了AX=0的一般解法
首先将A化为U,这一步是因为在消元过程中0空间保持不变
2,得到U我们就可以知道A的秩,主列,自由列分别是什么
3,对自由列表示的变量(自由变量)进行简单赋值,一般取0,1两个值,并由此算出主列未知数的值,从而得到几个特殊解
4,这些未知数的全部线性组合就构成了0空间,也即通解.
然后回看A矩阵,表达的意思,其实是第二列与第四列都是线性相关的向量,去掉对结果也没有影响.
2,如果秩为2,表示主元个数为2,自由列个数为n-2,特解个数也为n-2,其中n为未知数个数.同时秩为2,表示A中只有两个方程在起作用.
U为阶梯矩阵,那么还能否化简?
这里可以化简为行最简矩阵在本书中记为R:主元上下都是0,并且主元都是1