Iveco Group和亚马逊云:持续创新的故事

Iveco Group和亚马逊云:持续创新的故事

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Cloud-Based Solution, Software Development, Automotive Software, Virtual Engineering, Knowledge Management]

导读

本次会议展示了Iveco集团如何利用亚马逊云科技推动虚拟工程、知识管理和生成式AI驱动自动化方面的创新、协作和数字化转型。了解Iveco如何在亚马逊云科技上构建自助式开发平台,以实现更快的开发周期并减少硬件依赖。该公司的虚拟工程工作台通过为数字驾驶舱开发和自动化测试提供虚拟化环境,促进了开发人员、测试人员和集成人员之间的协作。此外,该公司的知识管理解决方案通过简化技术信息的访问来提高生产力,而生成式AI则自动化了诸如从机械图纸生成产品数据表等任务。

演讲精华

以下是小编为您整理的本次演讲的精华。

在引人入胜的亚马逊云科技re:Invent 2024大会上,亚马逊云科技专业服务部门的高级客户经理Alessandra Ricci登台,揭开了Iveco集团与亚马逊云科技专业服务部门合作的非凡历程。在Iveco集团的同事和代表的陪同下,此次会议将真实展现Iveco集团如何利用亚马逊云科技专业服务的力量,彻底革新其内部流程。

Alessandra强调,本次会议所呈现的用例选择经过精心策划,旨在启发观众并鼓励他们在各自的业务中探索这些解决方案的适用性。在深入探讨用例之前,Alessandra介绍了来自Iveco集团的Pierre Francesco Corizzo,他分享了公司的愿景和背景。

Iveco集团:一家开拓性的汽车业巨头 Iveco集团人工智能实验室负责人Pierre Francesco Corizzo全面概述了公司的悠久历史和当前运营。Iveco集团可追溯至20世纪70年代,当时它由五个工业OEM品牌合并而成,隶属于Fiat控股公司。2022年从CNH剥离后,Iveco集团成为一家独立实体,总部位于都灵,并在著名的米兰证券交易所上市。

Iveco集团拥有逾36,000名员工,是设计和生产货运和客运解决方案以及发动机的强大力量。该公司在意大利市场占据主导地位,近40%的意大利商用车辆都是Iveco品牌。此外,其Iveco Bus品牌在意大利市场占有44%的份额,通过2024年销售逾1,000辆电动车,在城市减少二氧化碳排放方面发挥着关键作用。

Iveco集团紧跟未来互联趋势,目前拥有逾140,000辆联网车辆,产生高达1TB的数据。然而,该公司的雄心更加远大,预计到本十年末将拥有500,000辆联网车辆。

在财务实力方面,Iveco集团在2023年实现了超过160亿欧元的令人瞩目营业额。Pierre Francesco Corizzo强调,过去五年来,汽车行业经历了前所未有的变革步伐,这源于气候变化、新法规、排放挑战以及车辆定制和极端创新日益增长的复杂性。

Iveco集团的创新路线图:可持续性、人工智能和自动驾驶 Iveco集团的创新路线图是一个大胆而有远见的蓝图,建立在可持续性、人工智能(AI)和软件定义车辆以及自动驾驶三大支柱之上。

  1. 可持续性:Iveco集团矢志不渝地致力于环境管理,设定了到2040年实现零二氧化碳排放的宏伟目标。
  2. 人工智能和软件定义车辆:认识到人工智能技术的变革潜力,Iveco集团正利用这些尖端解决方案将基于人工智能的产品投入生产。此外,该公司还是软件定义车辆的开拓者,有望极大提升客户的用户体验。
  3. 自动驾驶:Iveco集团在自动驾驶技术领域处于领先地位,专注于开发2+级自动驾驶能力。该公司计划在未来几年内将这些开创性的车辆投入生产。

Iveco集团投资云技术是一项战略举措,认识到云是支持其业务和产品的创新、开放和可扩展的解决方案。在本次会议上,Pierre Francesco着重介绍了两大支柱:基于人工智能的服务和自动驾驶。

亚马逊云科技专业服务的方法:变革的规范性指导 Alessandra Ricci随后揭示了亚马逊云科技专业服务提出的规范性指导,其基础是亚马逊云科技方法。这一旅程始于“反向工作”方法,这是一种强大的工具,可与Iveco集团密切合作,确定问题或机遇。

这个关键步骤涉及定义期望的业务成果,作为照亮前进道路的灯塔。一旦达成工作模型,亚马逊云科技专业服务就会通过实现最小可行产品(MVP)来制定实现目标的路线图。随着有形成果的出现,它们将被提交给Iveco集团的关键利益相关方,寻求认可并为工业化铺平道路。

Alessandra强调建立一个健全的机制来管理工业化进程的重要性,引用了一份Gartner报告,其中提到了一个令人沮丧的统计数据:2023年仅有10%的人工智能/机器学习概念验证成功转化为当年的生产。

为了扩大实验规模并培养持续改进的文化,Iveco集团和亚马逊云科技专业服务采用了Scaled Agile方法。该方法涉及定义一个Portfolio Backlog,这是一个透明的存储库,作为公司、业务单位和供应商的单一事实来源,容纳所有战略计划。

Scaled Agile方法强化了最小可行产品的概念,确保持续为内部和外部最终用户提供价值。它还为实现最终结果提供了路线图,允许在一年内进行迭代审查、优先排序和适应变化、挑战和学习。

Alessandra强调在这一变革历程中保持谦逊的重要性,承认需要摒弃过去的做法,拥抱持续学习和适应的心态。亚马逊云科技专业服务的专长不仅限于技术,还包括流程,使其能够全面支持Iveco集团的转型。

用例1:车辆工程工作台(VEW) - 实现软件定义车辆的民主化 第一个用例是车辆工程工作台(VEW),这是一个开创性的解决方案,旨在实现不同业务单位在软件定义车辆领域合作的民主化。

Pierre Francesco Corizzo分享了Iveco集团员工在汽车软件开发和基于云的解决方案方面所面临的挑战:

  • 开发环境缺乏一致性
  • 设置过程缓慢且复杂,通常需要6-8周时间
  • 反馈循环漫长,有时需要数周或数月
  • 涉及超过50种工具,导致许可和硬件问题
  • 严重依赖硬件,减缓了开发进程

Alessandra介绍了VEW解决方案,这是一个集中式平台,为各种用户角色提供服务,包括软件开发人员、质量团队、产品和项目经理、软件集成商和测试人员。

安全性是VEW解决方案的重中之重,它管理环境的整个生命周期,从供应和与生态系统集成到发布。它提供了针对用户配置文件的身份验证和授权层,确保了一致且可扩展的访问管理。

VEW建立在三大支柱之上:工具、虚拟目标和亚马逊云科技基础设施。工具使最终用户能够实现其用例,而虚拟目标旨在实现与真实硬件的功能对等,根据所需的成熟度水平可达到100%的对等性。所有这一切都通过多租户和全球可访问的亚马逊云科技基础设施无缝管理。

VEW是一个云原生的无服务器Web应用程序,允许最终用户连接和部署虚拟目标。它通过CI/CD管道与Iveco的主要系统和预定义工具集成,为开发人员、测试人员和集成商提供安全且无缝的体验。

第一个MVP关注的是与数字仪表盘相关的功能对等级别1。Alessandra解释了实际组件(ECU、信息娱乐系统、仪表)与在亚马逊云科技基础设施上运行的虚拟对应物之间的架构映射。

展望未来,Iveco集团旨在扩展到功能对等级别1+或2,利用ADAS、IP规模计算等技术,以及不断发展的支持Corollium的ARM CPU和亚马逊云科技 Graviton 3和4实例。

一段预先录制的演示展示了VEW界面,用户可以访问预定义的工作台、虚拟目标和管理任务。开发人员可以启动诸如Android Studio之类的工具,测试应用程序,并在最终目标操作系统模拟器上执行,所有这些都在VEW中集中管理。

VEW的业务成果: Pierre Francesco Corizzo分享了VEW解决方案带来的显著业务成果,以及对生产力和效率的影响:

  • 开发人员入门所需时间减少95%
  • 软件开发团队效率提高30%
  • 改善了环境配置,专注于软件开发
  • 环境一致且安全,减少了安全流程的需求
  • 预计可减少40%的文档错误

用例2:智能知识管理 - 释放生成式人工智能的力量 第二个用例探讨了在Iveco集团的知识管理和技术图纸中应用生成式人工智能(GenAI)。Pierre Francesco解释说,他们于2023年年中开始了知识管理的GenAI之旅,着手进行概念验证(PoC)。

智能知识管理: Iveco集团拥有数以十万计的文档资料库,通过简单的开放式搜索来检索信息效率低下,这给他们带来了重大挑战。他们旨在利用GenAI作为技术支持,实现自然语言信息检索,同时确保一定程度的可靠性(目标80%),并实现信息检索时间减少90%。

主要障碍是处理数据库中组织不佳的数据,促使Iveco集团进行全面的数据重组工作。

亚马逊云科技专业服务的高级经理Marco Guerrero阐述了他们如何利用检索增强生成(RAG)方法将GenAI解决方案与Iveco集团的特定知识库相结合。

RAG将大型语言模型与实时信息检索相结合,允许系统提供与Iveco集团知识库相关联的明智响应,确保相关性和准确性。

Marco强调了将概念验证转化为生产就绪环境的四个关键要素:

  1. 性能优化:确保快速高效地访问信息,优化准确性、响应时间、数据检索和整体用户体验。
  2. 安全和合规性:实施Amazon Cognito等强大措施,用于安全用户身份验证和访问控制;Amazon Bedrock Guardrails,用于负责任的AI和用户隐私;以及Amazon PrivateLink和VPC端点,将流量保持在亚马逊云科技网络内。
  3. 云操作模型和自动化:利用基础设施即代码工具(Amazon CDK、亚马逊云科技转换、Terraform)实现跨环境的一致可重复部署,与Iveco集团现有的Azure DevOps无缝集成CI/CD管道,并启用配置管理以保持解决方案的最新和高性能状态。
  4. 测试和监控:建立全面的评估框架,用于质量、可靠性和可用性;实施各种测试策略(单元、集成、用户验收);进行可用性测试并收集用户反馈;定义KPI来衡量有效性(用户满意度、知识重用、内容质量);并纳入反馈循环以持续改进。

在所有支柱中,Marco强调以人为本的方法,优先考虑用户需求,与最终用户和主题专家进行互动,提供量身定制的培训和响应式支持,并在组织内部培养持续学习和知识共享的文化。

智能知识管理的业务成果: Pierre Francesco Corizzo分享了智能知识管理解决方案取得的业务成果:

  • 信息检索时间减少90%
  • 与旧系统相比,新研究人员增加50%
  • 文档错误减少40%
  • 文档生成成本减少50%

用例3:技术图纸解释(Teddi) - 展现多模态AI的力量 第三个用例集中于应用GenAI和计算机视觉能力来解释Iveco集团的技术图纸,这是一个需要多方面方法的挑战。

挑战: - 区分机械部件(如活塞和连杆) - 从图纸中提取信息并达到一定的准确度 - 在单个图纸中区分不同的报价(有时超过50个)

解决方案:多模态AI和AI代理 Marco Guerrero介绍了多模态AI的概念,这是从具有挑战性的技术图纸中提取复杂信息的强大工具。多模态嵌入将图像和文本表示在共享的高维向量空间中,其中语义相似的项目被映射在彼此接近的位置。

通过将视觉表示和相关文本嵌入到这个联合空间中,该解决方案增强了在复杂图表中搜索特定组件的能力,为信息检索和分析开辟了新的可能性。

然而,Marco承认提取复杂信息通常需要一种多步骤的方法,将问题分解为可由专门算法管理的子问题。为了应对这一挑战,他介绍了AI代理的概念,可以编排这些步骤,利用光学字符识别(OCR)、图像分割、人工提示,并创建健壮灵活的工作流程。

Amazon Bedrock Agents: 亚马逊云科技提供Amazon Bedrock Agents服务,使客户能够通过选择基础模型、提供对企业数据系统的访问权限以及与其他亚马逊云科技服务(如Lambda函数)集成,来创建AI代理。这使得能够创建编织不同步骤以实现特定业务成果的主动AI工作流。

解决方案工作流: Marco演示了该解决方案的工作流程,以回答“进气阀外径是多少?”的问题。步骤包括:

  1. 使用开源框架(如Meta的SAM2)进行图像分割,将复杂图像分解为可管理的部分。
  2. 裁剪图纸的相关部分以进一步分析。
  3. 使用Amazon Textract和Amazon Rekognition进行OCR文本提取,提取与该部件相关的关键测量值。
  4. 密集匹配,用于对准和高亮最有可能包含答案的部件。
  5. 推理层(Amazon Bedrock)解释提取的数据以形成最终答案。

该解决方案的功能不仅仅是提取值,还能回答更复杂的问题,例如提供缸径间距的值,因为它能够理解内燃机中不同组件之间的关系。

Teddi:技术图纸数据解释 Marco介绍了“Teddi”(Technical Drawing Data Interpretation,技术图纸数据解释),这是该解决方案的名称。Teddi具有类似聊天的界面,用户可以在其中输入问题,系统会处理查询并根据从Iveco集团数字档案中检索的信息提供答案。

答案由三个子部分组成:

  1. 针对问题的具体答复
  2. 放大的技术图纸部分,突出显示相关部件
  3. 与该组件相关的其他测量值列表

用户可以查看完整的技术图纸,揭示原始问题的复杂性以及设计中涉及的多个组件。界面还包括用户提供答复反馈的选项,与以人为本的方法保持一致。

Teddi的业务成果: Pierre Francesco Corizzo分享了Teddi解决方案取得的业务成果:

  • 从图纸中检索信息所需时间减少
  • 员工检索技术图纸信息的查询次数增加
  • 技术文档错误减少
  • 通过减少从头创建新组件和处理新零件号的需求,节省了公司成本

Iveco集团的未来愿景:拥抱创新和以客户为中心 Pierre Francesco Corizzo分享了Iveco集团首席技术和数字官的一段话,强调了公司致力于将客户置于运营中心,保持灵活性以满足不断发展的需求,通过引入新的基于AI的服务不断创新,并利用与亚马逊云科技等重要合作伙伴的合作关系。

Iveco集团设想下一代车辆将集中驾驶员体验,同时逐步引入更多基于AI的服务,实现大规模AI采用。他们想象着互联车辆彼此通信以及与周围基础设施通信,以及自动驾驶功能,让驾驶员在路上时可以执行其他任务。

结论:创新和转型的持续之旅 Alessandra Ricci在会议结束时向与会者、为取得这些非凡成果而不懈努力的团队以及Iveco集团代表表示感谢,他们的宝贵合作功不可没。她鼓励观众填写调查问卷,并提供了进一步咨询的联系方式。

本次会议展示了Iveco集团与亚马逊云科技专业服务在创新之旅中的持续合作,利用生成式AI、计算机视觉和基于云的解决方案等尖端技术,改善内部流程、提高生产力并推动业务成果。这是对合作、创新和共同追求更可持续、技术更先进的未来愿景力量的有力证明。

下面是一些演讲现场的精彩瞬间:

伊威科集团展示了他们如何利用Dabla的专业服务来增强内部流程,并展示了启发性的使用案例,以激励企业探索潜在的应用。

这是一个基于云的无服务器Web应用程序,允许最终用户安全地连接和部署虚拟目标,通过CI/CD管道与各种系统集成,为开发人员、测试人员和集成商提供流畅的体验。

解释了利用虚拟工程工作台实现的第一个使用案例,包括数字驾驶舱和映射到亚马逊云科技云基础架构。

介绍第二个使用案例:伊威科集团的营销技术关键图纸,应用NLI和计算机视觉来区分机械部件,并从技术图纸中高精度地提取信息。

一个利用开源框架和亚马逊服务的主动AI工作流程,从复杂的图纸中提取和解释技术数据,回答“进气阀外径是多少?”这个问题。

Teddi是一种基于聊天的解释技术图纸的解决方案,它展示了从数字档案中回答特定问题并提供相关视觉辅助的能力。

演讲者最后邀请Alessandro发表总结陈词。

总结

伊威科集团与亚马逊云科技专业服务的合作之旅展现了一段持续创新的非凡历程。作为一家领先的汽车公司,伊威科踏上了变革之路,利用亚马逊云科技的专业知识革新了内部流程,提升了客户体验。

通过基于云的车辆工程工作台(VEW)解决方案,伊威科简化了软件开发流程,使开发人员能够专注于编码,同时自动化重复性任务。这一举措使启动时间缩短了95%,团队效率提高了30%。此外,由生成式人工智能驱动的智能知识管理系统改善了对技术文档的访问,信息检索时间缩短了90%,数据一致性提高了40%。

多模态人工智能方法的技术图纸数据解释(Teddi)解决方案彻底改变了对复杂技术图纸的解释。Teddi通过结合计算机视觉和自然语言处理,准确提取测量数据并推理复杂组件,大幅减少了错误和成本。

伊威科对未来的愿景是开发可持续、由人工智能驱动和自主的车辆,以满足客户需求为重点,并构建一个互联互通的车辆生态系统。这一旅程体现了合作、创新和以客户为中心的力量,为汽车行业的变革铺平了道路。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值