什么是AI优先的公司?寻找AI转型之路(由Atos赞助)

什么是AI优先的公司?寻找AI转型之路(由Atos赞助)

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Bedrock, Ai-First Organization, Generative Ai Adoption, Data Governance Challenges, Ethical Ai Considerations, Enterprise Ai Transformation]

导读

本次闪电演讲探讨了成为一家以AI为先的公司意味着什么,以及实现这一转型所需的步骤。探索企业面临的挑战、成功所需的文化和战略转变,以及将AI嵌入核心运营所需的关键平台。同时了解Atos的MLOps和GenOps解决方案如何通过简化AI模型的开发、部署和大规模治理来帮助克服这些挑战。获取有关推动创新、优化决策制定以及通过经验证的运营框架加速AI之旅的见解。本次演讲由亚马逊云科技合作伙伴Atos为您带来。

演讲精华

以下是小编为您整理的本次演讲的精华。

“AI优先”组织的概念应运而生,成为一种变革性的转变,人工智能深深融入了运营的方方面面,包括决策、客户互动和产品服务。这种方法有别于简单采用AI工具的传统方式,AI优先组织从根本上将AI融入新产品和服务的构建,而不是将AI功能附加到现有的传统系统上。

推动这一转变的动力是AI初创企业带来的颠覆,它们正在迅速构建AI驱动的产品和服务,对传统企业构成了威胁。为了应对这种颠覆,企业必须成为AI优先组织,从而能够更快地创新,并建立一个平台,可以快速开发AI用例,无需进行大量基础工作。

Kevin Davis是亚马逊云科技证据业务组的CTO,他强调了组织内部对AI的准备和运营准备的重要性。他建议企业应制定AI战略,以便构建一个平台,赋能整个组织快速开发AI用例。该平台将集中采购数据、治理等基础任务,让团队能够立即专注于用例本身,并快速衡量投资回报率(ROI)。Davis建议企业首先成立AI办公室或AI卓越中心,负责构建这一平台、集中和治理数据,并使组织其他部门能够在此基础上开发AI产品和服务。这种方法将使企业能够“快速失败、实验和行动”,找到能产生新收入来源的正确用例。

Eric Trell是Atos在亚马逊云科技云端的负责人,他分享了一些成功采用AI优先方法的组织案例。他以亚马逊为例,强调亚马逊云科技正将AI融入他们所做的一切,从CodeWhisperer和代码转换工具,到诸如Amazon Distro for OpenTelemetry等服务的可观察性和工作流优化等运营能力。亚马逊利用其长期积累的机器学习专业知识,将AI整合到各个业务部门,包括亚马逊网站和零售运营,在那里他们已经使用AI多年。

Trell还强调Atos和Evidence是生成式AI的早期采用者。在代理能力广泛可用之前,他们就尝试了诸如Amazon Bedrock等工具,并构建了自己的检索增强生成框架和管道。Atos在印度浦那成立了生成式AI工作室,帮助客户原型设计和加速AI采用。该公司为内部系统(如合同、法律和人力资源流程)以及面向客户的服务(如工作场所生产力工具和为全球客户提供的托管服务)开发了AI应用程序。他们在工作场所使用主流AI工具,并构建了AI工具来更有效地与客户就服务问题进行沟通,并协助为客户构建应用程序。

讨论接着转向了数据挑战,数据被认为是AI计划的基石。两位小组成员都承认企业在处理遗留数据系统、数据孤岛以及适当的数据治理和安全性方面面临困难。Trell强调集中数据并与数据利益相关者建立信任的重要性,以实现有效的AI开发。他还强调了健全的数据治理框架的必要性,以确保用于训练AI模型的数据的可靠性和可信度。

Davis指出,数据挑战并非新鲜事物,因为企业长期以来一直在与遗留数据存储、过时格式和数据转换需求作斗争。然而,AI带来了额外的复杂性,确保数据清洁、正确编目和标记适当的metadata至关重要。他还强调了数据安全的重要性,强调Atos建立了一个安全、受控的环境,称为“登陆区加速器”,该环境建立在亚马逊的登陆区加速器服务之上。这一基础使客户能够将数据汇集到安全的数据湖中,减少了大量数据清理的需求,并确保了可靠的数据源用于AI训练和开发。Davis指出,即使在极端情况下,如在主机数据上运行生成式AI,也可以将数据复制到亚马逊云科技,从而能够在原本被视为禁区的遗留运营数据上使用生成式AI。

AI开发中的Ethical考虑也是讨论的重点话题之一。Davis提出了一种三层方法来解决伦理问题:在构建阶段时考虑伦理问题,即在增强数据和构建模型时;在模型部署期间实施防护措施;并持续监控生成式AI系统的输出。他强调了监控工具和应对计划的必要性,以重新训练模型并解决任何出现的问题,特别是在更开放的对话式AI界面中。

Trell补充说,伦理责任不仅仅局限于开发阶段,还包括整个应用程序生命周期和数据集成过程。他强调了确保数据隐私、安全和准确性的重要性,特别是在医疗保健等敏感领域。Atos开发了与医疗保健相关的生成式AI应用程序,并采取了措施来保护客户数据、分割敏感信息,并确保输出的准确性和可靠性。

两位小组成员都承认,传统的技术和计算机科学课程中缺乏伦理考虑。Davis指出,虽然他在MBA课程中学习过商业伦理,但在工程或计算机科学课程中从未接触过技术伦理课程。Trell表示,随着AI在各个行业的普及,这一缺口需要迅速得到解决。

总之,在亚马逊云科技 re:Invent 2024上的这场会议探讨了“AI优先”组织的概念,强调企业需要将AI深入融入运营,以保持竞争力和创新力。小组成员分享了实现这一转变的挑战和最佳实践,包括建立AI卓越中心、集中和治理数据、实施负责任的AI开发和部署的伦理框架,以及利用亚马逊云科技等云端解决方案来克服数据挑战。亚马逊、Atos和Evidence等公司的实际案例说明了采用AI优先方法的实际应用和好处,如使用AI进行代码开发(CodeWhisperer)、可观察性(Amazon Distro for OpenTelemetry)、工作场所生产力、客户服务,甚至医疗保健应用程序,同时也强调了解决伦理考虑、确保数据隐私、安全和准确性的重要性。

下面是一些演讲现场的精彩瞬间:

Athos和Evidence是一家以人工智能为驱动的公司,他们很早就开始尝试和构建自己的生成式人工智能框架和流程,在完整的功能可用之前就进行了实验。

亚马逊强调数据清洁度、适当的编目和metadata标记对于有效的人工智能和数据转换的重要性,解决了客户在遗留系统中长期面临的挑战。

强调数据安全的重要性,并建立一个安全、受控的环境作为人工智能和云工作负载的基础。

Swami Sivasubramanian强调了负责任的人工智能开发需要采取三层方法的重要性:利用数据构建和增强模型、实施防护措施,以及监控人工智能对用户的输出。

亚马逊云科技强调了数据安全和隐私的重要性,特别是在通过他们的生成式人工智能应用程序处理敏感的医疗保健信息时,确保在整个应用程序生命周期中对客户数据进行适当的数据分段和保护。

演讲者承认需要将道德考虑纳入教育课程,以应对科技的快速发展。

总结

人工智能革命正在改变企业,推动向“以人工智能为先”的方法转变,在这种方法中,人工智能深深植根于运营的每个层面。本文探讨了以人工智能为先的组织的本质、挑战以及必须解决的伦理考虑。

以人工智能为先的组织不仅仅是采用人工智能工具,它还建立了人工智能战略和平台,以便在整个企业中快速开发人工智能用例。亚马逊和Athos等公司正在引领这一趋势,将人工智能融入到他们的产品、服务和内部流程中。然而,数据仍然是一个关键挑战,需要集中管理、治理和安全措施,以确保人工智能模型使用高质量、可靠的数据。

在人工智能发展的过程中,伦理考虑是至关重要的。企业必须解决人工智能生命周期中可能存在的偏见、隐私问题和虚假信息风险,从数据收集和模型训练到部署和监控。伦理框架、防护措施和持续监控对于确保负责任和透明的人工智能实施至关重要。

随着企业拥抱以人工智能为先的理念,他们必须优先考虑数据准备、伦理实践以及实验和快速迭代的文化。通过克服这些挑战,组织可以释放人工智能的变革潜力,在日益以人工智能为主导的世界中推动创新、效率和竞争优势。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值