利用WherobotsAI大规模从卫星图像中提取洞见
关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, Whereabouts, Extract Insights, Geospatial Data, Satellite Imagery, Machine Learning Models, Cloud-Native Platform]
导读
在卫星图像中推断物体和检测变化曾经只限于那些拥有人才、资金和时间来构建、管理和运行复杂的自管理机器学习(ML)推理解决方案的公司。在这个简短演讲中,了解WherobotsAI栅格推理如何使数据平台和科学团队能够利用卫星图像,通过SQL和Python更快、更可靠地分析我们的星球,且不产生碳足迹。栅格推理是一个完全托管、高性能、碳中和的行星级计算机视觉解决方案,使大多数开发人员和数据科学家都能够在卫星图像上进行AI和ML分析。本演讲由亚马逊云科技合作伙伴Wherobots为您带来。
演讲精华
以下是小编为您整理的本次演讲的精华。
在当今瞬息万变的世界中,观察、理解和从我们的物理环境中提取见解的需求达到了前所未有的水平,这一现实势必会进一步加剧。这一不便的事实由飓风Helene和Milton造成的毁坏性影响得到了体现,它们导致了大量生命损失,并给美国东南部的基础设施造成了数十亿美元的损失。虽然生命的损失是无法弥补的,我们对受影响者表示最深切的同情,但重建工作凸显了地理空间数据在增强抵御此类灾难性事件的能力和减轻不断变化的物理世界带来的风险方面所能发挥的关键作用。
地理空间数据的巨大价值超越了自然灾害,它有望彻底改变那些在实体资产和运营方面投入巨资的行业。物流和运营巨头如亚马逊、Uber和JB Hunt已经在其供应链上投入数十亿美元,寻求应对天气波动、需求转移、道路状况和施工中断等因素的解决方案,而这些因素都可以通过地理空间数据来捕捉。保险公司为了提供有竞争力的保险范围,正在认识到在物业层面进行细粒度、持续的风险评估能力的需求,而地理空间数据可以促进这一点。
银行、房地产公司和资产管理公司已经在包括土地在内的实体投资上积累了数万亿美元,这凸显了地理空间数据在有效管理这些资产方面的关键性。林业和农业企业为了适应不断变化的物理世界,正在寻求地理空间数据带来的创新解决方案。移动和汽车行业正在积极开发系统来应对我们周围环境的不断变化,并利用地理空间数据来推动其进步。地方和国家政府正在投资改善土地管理技术和城市规划策略,这些都受益于地理空间数据带来的见解。
虽然地理空间数据的潜在应用范围广泛,但要发挥其力量并非易事。来自卫星、无人机、GPS设备和车辆的数据以PB为单位,可以在亚马逊云科技数据交换平台上获得。然而,这些数据与传统的互联网数据结构不同,给大多数为处理互联网数据而设计的基于云的计算引擎带来了挑战。试图用这些引擎处理地理空间数据往往会导致性能不佳、可扩展性受限,并且缺乏对地理空间工作负载所需的独特空间操作的支持。此外,某些解决方案可能需要数据迁移和采用专有格式,进一步增加了复杂性。
这些挑战导致了“Frankenstein架构”的出现,团队试图通过专门的工具、库和可视化层来增强现有的云解决方案,以适应地理空间数据处理。这种补丁式方法不仅增加了构建解决方案的复杂性和开销成本,而且还使大多数缺乏资源、人才和财力来进行此类工作的公司难以获得地理空间数据解决方案。
Whereabouts的两位联合创始人Moe和Gia很早就意识到了这些障碍,并着手解锁地理空间数据的变革潜力。他们在亚利桑那州立大学的研究建立在这样一种信念之上:地理空间数据可以深刻影响世界,但他们也承认阻碍其广泛采用的技术限制。
在寻找解决方案的过程中,Moe和Gia尝试了Spark这种大数据架构,但它并不适合地理空间数据处理。这促使他们创建了开源库Apache Sedona项目,使Spark、Flink和Snowflake能够有效处理地理空间工作负载。Apache Sedona的成功超出了预期,它的受欢迎程度飙升,吸引了亚马逊、Uber、梅赛德斯-奔驰、Lana Lake和瑞士再保险等知名采用者。这些公司利用Apache Sedona推进了其地理空间数据解决方案,尤其是用于Spark工作负载和在Snowflake中。
由Moe和Gia创立的Whereabouts公司的使命是让地理空间数据易于使用。他们的产品Whereabouts AI解决了速度、规模和性能的核心挑战,提供的空间计算速度比其他托管的Spark解决方案快20倍。这种卓越的性能是通过专门为空间工作负载构建的优化计算引擎实现的,该引擎利用了团队的研究和专业知识。
开发人员和客户赞扬Whereabouts AI能够在单一解决方案中无缝处理栅格(图像)和矢量数据,同时保持与Apache Sedona的兼容性,并提供无服务器、云原生架构。
该产品的架构建立在开放数据基础之上,支持Iceberg、Parquet和存储在S3存储桶中的数据,并与各种数据存储集成。其核心是Whereabouts DB计算引擎,辅以Whereabouts AI产品线,包括栅格推理等机器学习功能,以简化空间数据解决方案的开发。
在这一架构之上是用于促进解决方案构建和部署的接口,包括与Airflow的集成,实现作业编排,从而实现自动化工作流,持续大规模生成见解。
栅格数据(如卫星图像)带来了独特的挑战。栅格图像中的每个像素都包含了诸如海拔、温度、颜色或光线等信息,这些信息按波长和行/列进行组织。虽然有PB级的这种数据可用,但传统方法(包括人工分析师或为小规模问题设计的计算机视觉模型)在可扩展性、成本效益和可用性方面都存在挑战。
Whereabouts AI的栅格推理产品解决了这些挑战,提供了一种针对大规模卫星图像工作负载进行优化的全托管SaaS解决方案。开发人员可以选择预托管模型或自带模型,并直接在云中(如亚马逊云科技)存储的图像上执行分割、分类和特征检测等操作。结果可以立即在Whereabouts中使用,允许开发人员将其与其他地理空间数据源相结合,构建综合解决方案,而无需专门的机器学习专业知识。
例如,亚马逊已经利用Apache Sedona进行最后一英里交付解决方案,正如最近的一次演示所展示的那样。另一位知名采用者Uber也将Apache Sedona集成到了其运营中。这些客户案例体现了Whereabouts技术在各个行业的真实影响和采用情况。
开始使用Whereabouts AI很简单,可以部署托管模型,也可以自带自定义模型。Whereabouts正在根据客户反馈不断扩展其托管模型目录,确保平台能够响应不断变化的需求。
该公司最近宣布获得A轮融资,并在亚马逊云科技市场上线,提供免费试用,包括400美元的Pro层积分,涵盖了大部分Whereabouts功能。这一发展标志着一个重要里程碑,使更多人能够获得Whereabouts AI创新解决方案,加快了寻求利用地理空间数据力量的客户实现价值的时间。
总之,Whereabouts AI旨在让企业和开发人员能够以前所未有的规模从地理空间数据(尤其是卫星图像)中提取有价值的见解。通过提供高性能、优化的空间数据处理平台、机器学习功能以及与现有数据源的无缝集成,Whereabouts AI使各行业的组织能够发挥地理空间数据的巨大潜力,推动创新、增强适应能力,并在不断变化的物理世界中做出更好的决策。
下面是一些演讲现场的精彩瞬间:
演讲者强调了观察、理解并从我们周围的物理世界中获得洞见的重要性日益增加。
强调了地理空间数据在建立抵御像飓风Helene和Milton这样的自然灾害的韧性以及适应不断变化的物理世界以保护数万亿美元投资的重要性。
Apache Sedona是一个流行的开源地理空间数据处理项目,正在获得亚马逊、Uber、梅赛德斯-奔驰和瑞士再保险等主要公司的青睐,使它们能够利用其强大的Spark工作负载和Snowflake解决方案的功能。
亚马逊云科技 Whereabouts允许开发人员使用SQL或Python在云中处理地理空间数据,使他们能够在不迁移数据的情况下,对不同类型的地理空间数据进行分段、分类和检测感兴趣的特征。
亚马逊的机器学习服务使开发人员无需专门的专业知识就能利用人工智能功能,从而能够构建推动业务增长的创新解决方案。
Amazon Whereabouts提供了广泛的预训练机器学习模型用于图像分析,并且能够引入您自己的自定义模型,从而轻松获取图像数据的见解。
演讲者兴奋地宣布了Whereabouts的A轮融资、在亚马逊云科技市场的上线以及免费试用优惠,以加速为客户创造价值。
总结
利用WhereaboutsAI的卫星影像力量
在当今世界,从地理空间数据中提取见解,尤其是卫星影像,已成为当务之急。Whereabouts的产品主管Damian推出了一种突破性解决方案,使企业和组织能够充分发挥这一庞大而复杂的数据源的潜力。
Whereabouts AI是一个前沿平台,旨在解决以前所未有的规模处理和分析卫星影像的挑战。通过利用针对地理空间数据优化的先进空间计算引擎,它提供了无与伦比的性能、可扩展性和易用性。开发人员可以无缝处理栅格和矢量数据,利用SQL或Python,无需广泛的机器学习专业知识。
该平台的栅格推理功能可轻松部署针对卫星影像分析的计算机视觉模型。凭借托管模型和自带模型的灵活性,Whereabouts AI简化了从数以万亿字节的卫星数据中提取有价值见解的过程。从分割和分类到特征检测,开发人员可以利用这些模型的强大功能,而无需复杂的推理管道。
Whereabouts AI的真正实力在于能够将卫星影像洞见与其他地理空间数据源相结合,使企业能够构建全面的解决方案,推动其运营向前发展。无论是优化供应链、为保险公司评估风险,还是实现更好的土地管理,Whereabouts AI都为我们开启了无限可能。
凭借最近的A轮融资和在Amazon Marketplace的可用性,Whereabouts AI有望彻底改变行业利用地理空间数据的方式。拥抱空间智能的未来,解锁将塑造更有弹性和可持续发展世界的见解。
亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。