利用生成式人工智能改进图像分析

利用生成式人工智能改进图像分析

关键字: [Amazon Web Services re:Invent 2024, 亚马逊云科技, 生成式AI, Bedrock, Prompt Engineering Techniques, Image Analysis Applications, Generative Ai Models, Satellite Imagery Analysis, Cloud Cover Constraints]

导读

使用生成式人工智能面临一些挑战,比如构建包含足够信息的提示,使AI能够理解任务但又不至于变得僵化,同时还要确保输入最新的数据。这一点在图像分析中尤为重要。在这个简短演讲中,我们的生成式AI专家将分享一些技巧和窍门,帮助您轻松构建能够获得相关、高质量结果的提示,从而更快地完成图像分析任务。

演讲精华

以下是小编为您整理的本次演讲的精华。

在2024年亚马逊云科技 re:Invent大会上,也被称为Generative AI大会,一场关于利用生成式AI提高图像分析能力的精彩会议吸引了与会者的目光。来自航空航天和卫星团队的解决方案架构经理Chris Wise和首席解决方案架构师Joy Fosnach登台探讨了提示工程在增强图像分析能力中的关键作用。

Chris Wise首先强调了提示工程在生成式AI领域的重要性。他阐明提示工程是有效与生成式AI模型互动并发挥其全部潜力的关键。深入探讨这一主题,Chris分析了构成优秀提示的各个组成部分。

他首先强调的是上下文,包括业务案例、相关约束条件以及模型应扮演的角色。上下文为AI模型理解任务的复杂性奠定了基础。与上下文密切相关的是约束条件,可进一步分为聚焦约束和特定限制。聚焦约束引导模型的视角,例如采用业务分析师或营销人员的角度,而特定限制则对数据集大小或输出格式等因素设置边界。

第二个组成部分是指令,即明确简洁的指令,概述AI模型应执行的具体任务。这些指令充当路线图,确保模型的努力与预期结果保持一致。

第三个组成部分是输入数据,包括模型应考虑的特定指标、拓扑结构和数据分析。这一组成部分提供了模型运作的原材料,塑造了其理解和后续输出。

最后,输出格式规定了模型应如何组织和呈现其发现,确保响应的连贯性和可操作性。

为了说明这些概念,Chris提供了一个实际案例,涉及一位为Cosmonet Solutions工作的技术文案撰稿人。Cosmonet Solutions是一家专门从事卫星互联网的先驱公司。上下文介绍了公司背景,以及模型作为文案撰稿人的角色,负责向潜在客户介绍Global Connect服务。指令要求模型撰写一篇宣传博客文章,而输入数据包括公司、服务和每月费用的详细信息。输出格式规定了吸引人的标题、引言、3-5个要点、400-500字的字数、专业但富有激情的语气,以及避免使用技术术语。

在Chris全面概述之后,Joy Fosnach登台演示了提示工程在卫星图像分析领域的应用。她介绍了亚马逊云科技的Generative AI技术栈,包括硬件、中间件(如Bedrock)以及业务应用程序(如Amazon Q)。

Joy的第一个演示展示了Claude 3.5 Sonnet模型在没有任何提示的情况下分析西澳大利亚海岸的卫星图像。该模型对沿海地区的植被、建筑物、道路和其他可观察特征进行了详细描述。然而,这一初步输出缺乏某些用例所需的特定性。

在第二个演示中,Joy通过提供上下文和指令来完善提示。她将模型的角色设置为卫星图像分析师,并指示它分析该区域、预测10英尺风暴潮的影响,并将输出限制在5个段落内,以满足城市规划的需求。这一完善的提示产生了更加集中和相关的响应,模型采纳了指定的角色,并按照指令提供了针对性的分析。

第三个演示通过引入约束条件进一步增强了提示。Joy指示模型估计云量覆盖率,如果超过25%则发出警告,同时仍提供所要求的5个段落。令人惊讶的是,模型准确估计出40-50%的云量覆盖率,并建议进行人工验证和纳入数字高程模型,以准确预测风暴潮的影响。这一演示凸显了提示完善在从图像数据中提取精确和可操作见解方面的强大作用。

在整个会议过程中,Joy强调了提示完善的重要性,并分享了宝贵的资源,供与会者深入探索这一主题。她提供了二维码,可访问亚马逊云科技关于提示工程的文档和GitHub上的Bedrock示例代码库。此外,Joy对于在图像分析和提示工程领域探索亚马逊云科技新推出的Nova模型的能力表现出了浓厚的兴趣。

会议最后,Joy邀请与会者前往亚马逊云科技行业展馆的公共部门展区,与航空航天和卫星团队进一步交流和合作,共同推进这一快速发展的领域。

总之,在2024年亚马逊云科技 re:Invent大会上举办的“利用Generative AI提高图像分析能力”会议强调了提示工程在发挥生成式AI模型用于图像分析任务的全部潜力中的关键作用。通过实际演示和深入解释,Chris Wise和Joy Fosnach阐明了有效提示的复杂组成部分,并展示了提示完善对于提高模型输出质量和相关性的变革性影响,尤其是在卫星图像分析领域。

下面是一些演讲现场的精彩瞬间:

演讲者热情洋溢地问在场观众是否正在享受2024年生成式人工智能大会,也被称为Reinvent。

演讲者强调了提示工程对图像分析的重要性,并介绍了一个演示,展示了Bedrock在从图像中发现更好见解方面的能力。

演讲者展示了Amazon Cloud 3.5的功能,这是一种可以处理文本和图像的模型,展示了它在各个行业的潜在应用。

Swami Sivasubramanian演示了如何优化提示,让人工智能模型分析卫星图像,并预测西澳大利亚沿海地区遭受风暴潮的影响,提供了背景、指令和具体目标。

人工智能助手展示了承担特定角色的能力,在这种情况下是卫星图像分析师,并提供了量身定制的深入分析。

人工智能模型准确估计了云量百分比,并确定需要人工验证和数字高程模型,以预测西澳大利亚沿海地区可能出现10英尺风暴潮的影响。

演讲者邀请观众前往亚马逊云科技行业展馆公共部门标志下的航空航天和卫星团队展位,进一步讨论和提问。

总结

在不断演进的生成式人工智能领域中,提示工程已成为挖掘图像分析全部潜力的关键组成部分。本文探讨了制定有效提示的复杂性,利用Amazon Bedrock和Claude 3.5模型从卫星图像中提取更深入的见解。

首先,强调了上下文、指令和约束的重要性,因为这些元素塑造了模型的理解并指导其分析。通过提供清晰的角色,如卫星图像分析师,以及具体的指令,如预测10英尺风暴潮的影响,模型可以针对所需结果量身定制响应。此外,施加云量阈值等约束并结合数字高程模型可提高分析的准确性和可靠性。

其次,本文展示了一个实际演示,通过迭代式提示优化分析了西澳大利亚海岸的卫星图像。最初,模型在没有任何提示的情况下对图像进行了详细描述。然而,随着上下文、指令和约束的引入,模型的输出变得越来越集中和相关,为城市规划和灾难准备提供了宝贵的见解。

第三,本文强调了持续改进和探索的重要性。通过利用Amazon Bedrock示例的开源GitHub存储库和有关提示工程的文档,开发人员可以深入探讨这种技术的复杂性,并将其调整为满足特定用例的需求。此外,本文强调了集成最新进展(如Nova模型)的潜力,凸显了生成式人工智能不断演进的本质。

总之,本文是一个令人信服的号召,呼吁在图像分析领域采用提示工程作为一种强大工具。通过利用Claude 3.5等生成式人工智能模型的能力,并借助亚马逊云科技提供的资源,企业可以开启从视觉数据中提取有价值见解的新前景,推动各行业的创新和明智决策。

亚马逊云科技(Amazon Web Services)是全球云计算的开创者和引领者。提供200多类广泛而深入的云服务,服务全球245个国家和地区的数百万客户。做为全球生成式AI前行者,亚马逊云科技正在携手广泛的客户和合作伙伴,缔造可见的商业价值 – 汇集全球40余款大模型,亚马逊云科技为10万家全球企业提供AI及机器学习服务,守护3/4中国企业出海。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值