区间dp经典 poj2955


从左到右 凡是 先遇到 '(' 后遇到‘)’  或者 先遇到 '[‘ 后遇到 ’]'的算一个匹配 长度为2


假设一个串 长度为  len

0.....................(len-1)

求 其中 任意 i 到 j 下标 的 子串 它 的 最长 匹配括号长度 
设为 f(i,j)

则 f(i,j)=max( f[i,k]+f[k+1][j](枚举) , f[i+1][j-1]+(a[i],a[j]是否匹配?2:0));


ok 动态归划  从 子状态 开始 推

则 边界是 len=1和 len=2的 时候 其dp值 分别为 0 和 2或0

#include <iostream>
#include <string.h>
#include <cstring>

#define Max(a,b) (a)>(b)?(a):(b)
using namespace std;

const int MAXN=110;
char str[MAXN];
int dp[MAXN][MAXN];

bool Is_Match(const char &a,const char &b){
	if(a=='(' && b==')')
	  return true;
	if(a=='[' && b==']')
	  return true;
	return false;
}

int main(void)
{
	while(cin>>str)
	{

		if(str[0]=='e')
		  break;
		int i,j,k;
		int len=strlen(str);
		memset(dp,0,sizeof(dp));
		for (i = 0; i < len; i++) {
			dp[i][i] = 0;
			if(Is_Match(str[i],str[i+1]))
			  dp[i][i+1]=2;                           //len=1和 len=2的 时候 其dp值 分别为 0 和 2或0
			else
			  dp[i][i+1]=0;
		}
		for (k = 3; k <= len; k++) {
			for( i = 0; i+k-1 < len; i++) {
				if(Is_Match(str[i],str[i+k-1]))
				  dp[i][i+k-1]=dp[i+1][i+k-2]+2;
				for (j = i; j < i+k-1; j++) {
					dp[i][i+k-1]=Max(dp[i][i+k-1],dp[i][j]+dp[j+1][i+k-1]);

				}
			}
		}
		cout<<dp[0][len-1]<<endl;

	}
	
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值