《深度学习入门》学习记录 Part3

本文是《深度学习入门》的学习记录,主要复习了神经网络的学习过程,包括梯度法、数值微分计算梯度、计算图的反向传播。还介绍了与学习相关的技巧,如参数更新、权重初始化、批量归一化和过拟合的抑制方法。重点讨论了卷积神经网络及其组件的作用。
摘要由CSDN通过智能技术生成

这周主要是复习了《深度学习入门》的第四、五章节,并快速浏览了剩下的第六、七、八章节。

复习「神经网络的学习」

把神经网络的学习的过程又熟悉了一遍,并且把相关的方法大致写了出来。

神经网络的学习过程

通过「梯度法」,不断的沿着「损失函数」关于「权重参数」的「梯度」方向前进,找到「损失函数」的最小值,从而得到最优的「权重参数」。
神经网络的学习

利用数值微分计算梯度的方法进行神经网络的学习

  1. 选取部分训练数据进行推理——Mini-batch
  2. 利用「数值微分」方法计算「梯度」
    1. predict:利用「激活函数」由输入x计算神经网络的输出y
    2. loss:利用「损失函数」由神经网络的输出y和监督数据t计算「损失函数」
    3. numerical_gradient:利用数值微分由「损失函数」和「权重参数」计算「损失函数」关于「权重参数」的「梯度」
  3. 通过「梯度下降法」更新「权重参数」
    1. 利用「梯度下降法」由「学习率」和「梯度」来更新「权重参数」
  4. 通过测试数据进行精度评价

数值微分梯度法的实现

计算图的反向传播:

计算图的优点:可以通过「正向传播」和「反向传播」高效的计算各个变量的「导数」值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值