基于卷积神经网络CNN实现旋转机械故障诊断——实现数据集-CWRU西储大学轴承,JN江南大学轴承,东南大学齿轮,HUST华科轴承注-Pytorch和tensorflow两种框架下实现,提供一种实现流程

基于卷积神经网络CNN实现旋转机械故障诊断——实现数据集:CWRU西储大学轴承,JN江南大学轴承,东南大学齿轮,HUST华科轴承注:Pytorch和tensorflow两种框架下实现,提供一种实现流程

基于卷积神经网络CNN实现旋转机械故障诊断——实现数据集:CWRU西储大学轴承,JN江南大学轴承,东南大学齿轮,HUST华科轴承注:Pytorch和tensorflow两种框架下实现,提供一种实现流程

使用卷积神经网络(CNN)来实现旋转机械的故障诊断。具体来说,该项目将使用四个不同的数据集:CWRU(西储大学)轴承数据集、江南大学(JN)轴承数据集、东南大学齿轮数据集和华中科技大学(HUST)轴承数据集。我们将使用PyTorch和TensorFlow两种深度学习框架来实现这一目标,以便读者可以根据自己的喜好选择适合的框架。

数据集
  • **CWRU(西储大学)轴承数据集**
  • **江南大学(JN)轴承数据集**
  • **东南大学齿轮数据集**
  • **华中科技大学(HUST)轴承数据集**
  • ##### 实现流程 1. **数据预处理**:将数据集转换为适合CNN输入的格式。1. **构建CNN模型**:使用PyTorch或TensorFlow构建卷积神经网络模型。1. **训练模型**:使用训练数据集训练CNN模型。1. **评估模型**:使用测试数据集评估模型的性能。1. **结果分析**:分析模型的准确率、损失函数等性能指标。 ##### 项目目录结构
    RotaryMachineFaultDiagnosis/
    ├── data/
    │   ├── CWRU_Bearing_Dataset.zip
    │   ├── JN_Bearing_Dataset.zip
    │   ├── SEU_Gear_Dataset.zip
    │   ├── HUST_Bearing_Dataset.zip
    ├── src/
    │   ├── pytorch/
    │   │   ├── main.py
    │   │   ├── model.py
    │   │   ├── dataset.py
    │   ├── tensorflow/
    │   │   ├── main.py
    │   │   ├── model.py
    │   │   ├── dataset.py
    └── README.md  # 项目说明
    
    示例代码
    PyTorch实现
    数据集定义 (src/pytorch/dataset.py)
    import torch
    from torch.utils.data import Dataset
    import os
    import numpy as np
    
    class BearingDataset(Dataset):
        def __init__(self, data_dir, transform=None):
            self.data_dir = data_dir
            self.file_list = os.listdir(data_dir)
            self.transform = transform
    
        def __len__(self):
            return len(self.file_list)
    
        def __getitem__(self, idx):
            if torch.is_tensor(idx):
                idx = idx.tolist()
    
            file_path = os.path.join(self.data_dir, self.file_list[idx])
            signal = np.load(file_path)
            label = int(self.file_list[idx].split('_')[1])  # 假设标签在文件名中
            if self.transform:
                signal = self.transform(signal)
            return signal, label
    
    CNN模型定义 (src/pytorch/model.py)
    import torch
    import torch.nn as nn
    
    class CNNClassifier(nn.Module):
        def __init__(self):
            super(CNNClassifier, self).__init__()
            self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3, padding=1)
            self.pool1 = nn.MaxPool1d(kernel_size=2)
            self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, padding=1)
            self.pool2 = nn.MaxPool1d(kernel_size=2)
            self.fc1 = nn.Linear(32 * 128, 128)
            self.fc2 = nn.Linear(128, 10)  # 假设10类故障
    
        def forward(self, x):
            x = self.pool1(torch.relu(self.conv1(x)))
            x = self.pool2(torch.relu(self.conv2(x)))
            x = x.view(-1, 32 * 128)
            x = torch.relu(self.fc1(x))
            x = self.fc2(x)
            return x
    
    主程序 (src/pytorch/main.py)
    import torch
    from torch.utils.data import DataLoader
    from torch import optim
    import torch.nn.functional as F
    from dataset import BearingDataset
    from model import CNNClassifier
    
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    
    dataset = BearingDataset('data/CWRU_Bearing_Dataset')
    train_loader = DataLoader(dataset, batch_size=32, shuffle=True)
    
    model = CNNClassifier().to(device)
    optimizer = optim.Adam(model.parameters(), lr=0.001)
    
    num_epochs = 20
    for epoch in range(num_epochs):
        model.train()
        running_loss = 0.0
        for batch_idx, (data, target) in enumerate(train_loader):
            data, target = data.float().unsqueeze(1).to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = F.cross_entropy(output, target)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()
        print(f'Epoch {epoch+1}/{num_epochs}, Loss: {running_loss/(batch_idx+1):.4f}')
    
    TensorFlow实现
    数据集定义 (src/tensorflow/dataset.py)
    import tensorflow as tf
    import numpy as np
    import os
    
    def parse_npz(file_path):
        signal = np.load(file_path)
        label = int(file_path.split('_')[1])
        return signal, label
    
    def create_dataset(data_dir, batch_size=32):
        file_paths = [os.path.join(data_dir, fname) for fname in os.listdir(data_dir)]
        dataset = tf.data.Dataset.from_tensor_slices(file_paths)
        dataset = dataset.map(lambda x: tf.numpy_function(parse_npz, [x], Tout=(tf.float32, tf.int32)))
        dataset = dataset.batch(batch_size)
        return dataset
    
    CNN模型定义 (src/tensorflow/model.py)
    import tensorflow as tf
    from tensorflow.keras import layers
    
    def build_cnn_classifier():
        model = tf.keras.Sequential([
            layers.Input(shape=(1024, 1)),
            layers.Conv1D(filters=16, kernel_size=3, padding='same', activation='relu'),
            layers.MaxPooling1D(pool_size=2),
            layers.Conv1D(filters=32, kernel_size=3, padding='same', activation='relu'),
            layers.MaxPooling1D(pool_size=2),
            layers.Flatten(),
            layers.Dense(128, activation='relu'),
            layers.Dense(10)  # 假设10类故障
        ])
        return model
    
    主程序 (src/tensorflow/main.py)
    import tensorflow as tf
    from dataset import create_dataset
    from model import build_cnn_classifier
    
    dataset = create_dataset('data/CWRU_Bearing_Dataset')
    model = build_cnn_classifier()
    model.compile(optimizer='adam',
                  loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                  metrics=['accuracy'])
    
    num_epochs = 20
    history = model.fit(dataset, epochs=num_epochs)
    
    项目运行

    确保安装了必要的依赖库:

    pip install torch torchvision tensorflow
    

    然后分别运行PyTorch和TensorFlow的主程序:

    python src/pytorch/main.py
    python src/tensorflow/main.py
    
    学习资源

    项目中的代码包含了详细的注释,帮助初学者理解各个部分的功能和作用。同时,提供的数据集可以让用户快速上手,了解如何使用卷积神经网络进行旋转机械故障诊断。

    总结

    这个旋转机械故障诊断项目是一个完整的解决方案,它不仅包含了多种数据集,还包括了使用PyTorch和TensorFlow两种深度学习框架实现的代码。通过本项目,你可以深入学习如何使用CNN进行旋转机械故障诊断,并将其应用于实际的故障诊断中。对于初学者来说,这是一个很好的学习平台,可以深入了解卷积神经网络及其在故障诊断中的应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jackie_AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值