基于卷积神经网络的滚动轴承故障诊断
基于卷积神经网络的滚动轴承故障诊断可一维振动信号直接进行故障诊断(模型可有1D-CNN、LSTM、GRU)也可通过格拉姆角场、马尔可夫变迁场递归图短时傅里叶变换和连续小波变换等算法转图像后进行故障诊断
基于卷积神经网络的滚动轴承故障诊断
可一维振动信号直接进行故障诊断
(模型可有1D-CNN、LSTM、GRU等)
也可通过格拉姆角场(GAF)、马尔可夫变迁场(MTF)、递归图(RecurrencePlot)、短时傅里叶变换(STFT)和连续小波变换等算法转图像后进行故障诊断
(模型可有AlexNet、GoogleNet、DenseNet、Resnet等,)
数据集可换成凯斯西储大学,东南大学,江南大学等等
基于卷积神经网络的滚动轴承故障诊断系统
项目概述
本项目旨在开发一种基于卷积神经网络(CNN)的滚动轴承故障诊断系统。该系统既可以使用一维振动信号直接进行故障诊断,也可以通过将一维信号转化为图像后再进行故障诊断。系统支持多种模型架构和数据集选项,以便适应不同的应用场景和技术需求。
项目特点
技术栈
方案一:直接使用一维振动信号进行故障诊断
数据预处理
模型架构
示例代码 (src/model_1d.py
)
import torch
import torch.nn as nn
class BearingFaultDiagnosisModel(nn.Module):
def __init__(self, input_dim, hidden_dim, num_classes):
super(BearingFaultDiagnosisModel, self).__init__()
self.conv1 = nn.Conv1d(input_dim, 32, kernel_size=3, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool1d(kernel_size=2)
self.lstm = nn.LSTM(input_size=32, hidden_size=hidden_dim, num_layers=2, batch_first=True, bidirectional=True)
self.fc = nn.Linear(hidden_dim * 2, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.relu(x)
x = self.pool(x)
x = x.permute(0, 2, 1) # Change shape to (batch, seq_len, input_size)
output, _ = self.lstm(x)
x = self.fc(output[:, -1, :])
return x
def train_model(model, train_loader, val_loader, epochs, learning_rate):
# Training loop
pass
def evaluate_model(model, test_loader):
# Evaluation function
pass
方案二:通过图像转化进行故障诊断
数据预处理
模型架构
示例代码 (src/model_image.py
)
import torch
import torch.nn as nn
from torchvision.models import resnet18
class BearingFaultDiagnosisModel(nn.Module):
def __init__(self, pretrained=True):
super(BearingFaultDiagnosisModel, self).__init__()
self.resnet = resnet18(pretrained=pretrained)
num_features = self.resnet.fc.in_features
self.resnet.fc = nn.Linear(num_features, num_classes)
def forward(self, x):
return self.resnet(x)
def train_model(model, train_loader, val_loader, epochs, learning_rate):
# Training loop
pass
def evaluate_model(model, test_loader):
# Evaluation function
pass
数据集介绍
数据集结构示例 (data/CWRU/
)
CWRU/
├── 1HP/ # 不同马力的数据文件
│ ├── Normal/
│ ├── Faulty Bearing/
│ └── ...
├── 2HP/ # 不同马力的数据文件
│ ├── Normal/
│ ├── Faulty Bearing/
│ └── ...
├── 3HP/ # 不同马力的数据文件
│ ├── Normal/
│ ├── Faulty Bearing/
│ └── ...
├── ... # 其他不同马力的数据文件
项目目录结构
BearingFaultDiagnosisSystem/
├── src/
│ ├── main.py # 主程序入口
│ ├── model_1d.py # 1D-CNN/LSTM/GRU 模型定义
│ ├── model_image.py # 基于图像的CNN模型定义
│ ├── preprocess.py # 数据预处理脚本
│ ├── utils.py # 工具函数
├── data/
│ ├── CWRU/ # 凯斯西储大学数据集
│ ├── SEU/ # 东南大学数据集
│ ├── JNU/ # 江南大学数据集
├── models/
│ ├── pre_trained.pth # 预训练模型
├── README.md # 项目说明
项目运行
确保安装了必要的依赖库:
pip install torch torchvision numpy pandas scipy matplotlib seaborn
然后运行主程序:
python src/main.py
学习资源
项目中的代码包含了详细的注释,帮助初学者理解各个部分的功能和作用。同时,提供的数据集和预训练模型可以让用户快速上手,了解如何使用卷积神经网络进行滚动轴承的故障诊断。
总结
这个滚动轴承故障诊断系统是一个完整的解决方案,它不仅包含了基于一维振动信号和图像的多种模型架构,还包括了广泛的数据集选项。系统提供了从数据预处理到模型训练和评估的完整流程,并且易于扩展和修改。对于初学者来说,这是一个很好的学习平台,可以深入了解滚动轴承故障诊断技术和深度学习的应用。