技术04期:关于神经网络的概念及技术领域

本文介绍了前馈神经网络中的RBF(径向基函数)神经网络,包括其网络结构、工作原理和应用。RBF网络通过非线性映射处理线性不可分问题,具有快速学习和良好泛化能力,常用于非线性函数逼近、模式识别等领域。
摘要由CSDN通过智能技术生成

导读

一般而言,我们可以把神经网络分为前馈网络、递归网络和反馈网络。前馈网络一般指前馈神经网络或前馈型神经网络。它是一种最简单的神经网络,各神经元分层排列。每个神经元只与前一层的神经元相连。接收前一层地输出,并输出给下一层,各层间没有反馈。包括:BP神经网络、RBF神经网络等。

 

递归神经网络(RNN)是两种人工神经网络的总称。一种是时间递归神经网络(recurrent neural network),又名循环神经网络,包括RNN、LSTM、GRU等;另一种是结构递归神经网络(recursive neural network)。

 

反馈网络(Recurrent Network),又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。包括CHNN、DHNN等。

 

前馈神经网络的网络结构比较简单,一般为神经网络的入门跳板

 

 

 

 

 

前馈神经网络之——RBF(Radial basis function)径向基函数神经网络

 

对神经网络有最基础了解的人都知道,神经网络其实就是输入层、几层隐含层、输出层。不同的layer之间的神经元互相连接,连接方式通常为线性加权。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值