有数组A[0,1,…,n-1],构建数组B[0,1,…,n-1],其中B[i] = A[0] * A[1] *…* A[i-1] * A[i+1]*…* A[n-1].但是不能使用除法。
最简单的想法是嵌套for循环,计算B[i]时用if跳过A[i],但是这样计算的时间复杂度就是O(n^2).
更高效(O(n))的算法是将B[i]分成两部分进行计算。B[i]可以用下面的矩阵来计算:
B[i]就是矩阵第i行的乘积。矩阵按对角线分成左右两部分。假设左边的每一行为C[i],右边的每一行为D[i],那么:
C[i] = C[i-1] * A[i-1]
D[i] = D[i+1] * A[i+1]
B[i] = C[i] * D[i]
首先用一个for循环从前往后计算C[i]并赋值给B[i];然后再用一个for循环从后往前计算D[i]并和B[i]相乘。这样B[i]就计算完成了。
vector<int> multiply(const vector<int>& A) {
int length = A.size();
if (length == 0)
return vector<int>();
vector<int> B(length, 1);
for (int i = 1; i < length; i++) {
B[i] = B[i-1] * A[i-1];
}
int temp = 1;
for (int j = length-2; j >= 0; j--) {
temp *= A[j+1];
B[j] *= temp;
}
return B;
}
需要注意的是计算D[i]的时候得倒着算。