题目链接:题目
大意:
给出两个数x,y,构造一个包含这两个数且每个数为正整数,相邻两个数间隔相同的数列,使得最大数尽可能小。
思路:
最大数尽可能小,自然想到间隔尽可能小,但是又不一定。首先虽然说给出了两个数x,y,但其实还有一个边界限制1,现在就有三个区域,1-x,x-y,y-…我们可以遍历间隔(因为这题数据量不大),只有能整除y-x的才有机会成为间隔,还有一个限制是加入这个间隔后x-y之间的长度不能超过n,然后不断比较最大数的大小,并记录此时的间隔。关于数列的构造方式,得到一个间隔后先必须填满x-y,然后n还有剩就填1-x,此时有两种情况:不够填满1-x,或者填满了1-x,继续排到y之后。
为了程序的清晰,最好定义几个变量:间隔、最大数、x-y之间的长度,1-x之间的长度、y后面的长度。
代码:
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define MOD 1000000007
#define fi first
#define se second
#define pr pair
#define vec vector
int solve(){
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t;
cin>>t;
while(t--){
int n,x,y;
cin>>n>>x>>y;
int ans=INT_MAX,it=1;
for(int i=1;i<=y-x;i++){
if((y-x)%i==0){
int a=(y-x)/i,c=(n-(a+1)-(x-1)/i)>0?(n-(a+1)-(x-1)/i):0,
b=y+c*i;
if(a+1>n)continue;
ans=min(ans,b);
it=ans<b?it:i;
}
}
//cout<<ans<<' '<<it;
int d=n-((y-x)/it+1)>0?n-((y-x)/it+1):0;
d=min(d,(x-1)/it);
for(int j=x-d*it;j<=ans;j+=it){
cout<<j<<' ';
}
cout<<endl;
}
return 0;
}