AI-基本概念-MP/单层感知机/MLP/CNN/RNN/自注意力模型

1 需求

  • MP模型
  • 单层感知机模型
  • MLP模型
  • CNN模型:LeNet、Alexnet、VGGNet、GoogleNet(Inception)、ResNet
  • RNN模型:RNN、LSTM、GRU
  • GAN模型
  • 自注意力模型(Transformer)
  1. MP 模型(1943 年)

    • 由美国神经生理学家沃伦・麦卡洛克(Warren McCulloch)和数理逻辑学家沃尔特・皮茨(Walter Pitts)提出,是最早的人工神经网络模型之一。
    • 它基于神经元的基本结构和功能,模拟了生物神经元的信息处理方式。
  2. 单层感知机模型(1957 年)

    • 由美国心理学家弗兰克・罗森布拉特(Frank Rosenblatt)提出。
    • 是一种简单的线性分类器,能够对线性可分的数据进行分类。
  3. MLP 模型(多层感知机,20 世纪 60 年代)

    • 在单层感知机的基础上发展而来,引入了多个隐藏层,增强了模型的表达能力。
    • 可以处理非线性问题,但在训练过程中容易出现梯度消失或梯度爆炸等问题。
  4. CNN 模型

    • LeNet(1998 年):由 Yann LeCun 等人提出,是卷积神经网络的经典模型之一,用于手写数字识别等任务。
    • Alexnet(2012 年):由 Alex Krizhevsky 等人提出,在 2012 年的 ImageNet 图像识别大赛中取得了巨大成功,推动了深度学习的发展。
    • VGGNet(2014 年):由牛津大学的研究团队提出,通过增加网络的深度来提高模型的性能。
    • GoogleNet(Inception,2014 年):由 Google 团队提出,采用了 Inception 模块,能够在不增加过多计算量的情况下提高模型的性能。
    • ResNet(2015 年):由微软亚洲研究院的何恺明等人提出,引入了残差连接,有效地解决了深层神经网络的训练难题,使得网络可以更深。
  5. RNN 模型

    • RNN(循环神经网络,20 世纪 80 年代):能够处理序列数据,通过循环结构将上一时刻的输出作为下一时刻的输入。
    • LSTM(长短期记忆网络,1997 年):由 Hochreiter 和 Schmidhuber 提出,解决了 RNN 长期依赖的问题,能够更好地处理长序列数据。
    • GRU(门控循环单元,2014 年):是 LSTM 的一种变体,简化了模型结构,计算效率更高。
  6. GAN 模型(生成对抗网络,2014 年)

    • 由 Ian Goodfellow 等人提出,由生成器和判别器组成,通过对抗训练的方式学习数据的分布,能够生成逼真的数据。
  7. 自注意力模型(Transformer,2017 年)

    • 由 Google 团队提出,基于自注意力机制,在自然语言处理等领域取得了巨大成功,如用于机器翻译的 BERT 模型就是基于 Transformer 架构。

这些模型的发展推动了人工智能领域的不断进步,在图像识别、语音识别、自然语言处理等众多领域都取得了显著的成果。


神经网络模型:

  • 全连接神经网络
  • 卷积神经网络
  • 循环神经网络
  • 基于注意力机制的神经网络

https://zhuanlan.zhihu.com/p/268709618


2 接口


3.1 MP模型

深度学习入门,什么是MP神经元模型_哔哩哔哩_bilibili

import numpy as np


# 定义激活函数(这里是简单的阶跃函数)
def step_function(x):
    return 1 if x >= 0 else 0


# MP神经元类
class MPNeuronWithWeightsBias:
    def __init__(self, weights, bias):
        self.weights = weights
        self.bias = bias

    def predict(self, inputs):
        weighted_sum = np.dot(inputs, self.weights) + self.bias
        output = step_function(weighted_sum)
        return output


# 示例用法
if __na
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值