医图论文 MIA 2025 | 基于合成误差增强的医学图像分割标签细化网络

论文信息

题目: Label refinement network from synthetic error augmentation for medical image segmentation
基于合成误差增强的医学图像分割标签细化网络
作者:Shuai Chen, Antonio Garcia-Uceda, Jiahang Su, Gijs van Tulder, Lennard Wolff, Theo van Walsum, Marleen de Bruijne
源码:https://github.com/ShuaiChenBIGR/Label-refinement-network

论文创新点

  1. 提出新颖标签细化方法:论文提出一种新颖的标签细化方法,通过生成带有逼真合成误差的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值