JZOJ 3518. 【NOIP2013模拟11.6A组】进化序列(evolve)

3518. 【NOIP2013模拟11.6A组】进化序列(evolve)

(File IO): input:evolve.in output:evolve.out
Time Limits: 1000 ms Memory Limits: 262144 KB

Description

Abathur采集了一系列Primal Zerg 的基因样本,这些基因构成了一个完整的进化链。为了方便,我们用A0,A1…An-1 这n 个正整数描述它们。
一个基因Ax 可以进化为序列中在它之后的基因Ay。这个进化的复杂度,等于Ax | Ax+1…| Ay的值,其中| 是二进制或运算。
Abathur 认为复杂度小于M 的进化的被认为是温和的。它希望计算出温和的进化的对数。

Input

第一行包含两个整数n,m。
接下来一行包含A0,A1…An-1 这n 个正整数,描述这n 个基因。

Output

第一行包含一个整数,表示温和的进化的对数。

Sample Input

4 6
1 3 5 1

Sample Output

2

Data Constraint

对于30% 的数据,1 <= n <=1000。
对于100% 的数据,1 <= n<= 100000,0 <= m <= 2^30,1<= Ai<= 2^30。

题解

两种解法:
一种是类似RMQ的倍增算法
另一种是……(我也不知道,有点像单调队列……反正是队列)

我用的是第二种,虽然不知道叫什么算法,但是也讲讲

用队列que表示当前选择
a [ i ] 表示第i位的1的个数
num表示当前进化复杂度

如果当前值x, x|num>m 就把队首丢掉

代码

#include<cstdio>
#include<queue>
#include<cmath>
#define lowbit(a) ((a)&-(a))
#define qu(q) ((long)log2(lowbit(q)))
#define N 32
using namespace std;
queue<long>que;
long a[N];
int main()
{   long n,m,i,q,num,x,ans=0;
    freopen("evolve.in","r",stdin);
    freopen("evolve.out","w",stdout);
    scanf("%ld%ld",&n,&m);
    num=0;
    for(i=1;i<=n;i++){
        scanf("%ld",&x);
        while((num|x)>m){
            for(q=que.front();q;q^=lowbit(q)){
                a[qu(q)]--;
                if(!a[qu(q)])
                    num^=lowbit(q);
            }
            que.pop();
        }
        num|=x;
        que.push(x);
        for(q=x;q;q^=lowbit(q))
            a[qu(q)]++;
        ans+=que.size()-1;
    }
    printf("%ld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值