5236. 【NOIP2017模拟8.7A组】利普希茨
(File IO): input:lipschitz.in output:lipschitz.out
Time Limits: 1000 ms Memory Limits: 524288 KB Detailed Limits
Description
Input
输入文件名为lipschitz.in。
第一行一个整数n。
接下来一行n个整数,描述序列A。
第三行一个数q 。
接下来q行,每行三个整数。其中第一个整数type表示操作的类型。 type=0对应修改操作, type=1对应查询操作。
Output
输出文件名为lipschitz.out。
对于每个查询,给出f(A[l..r]) 。
Sample Input
输入1:
6
90 50 78 0 96 20
6
0 1 35
1 1 4
0 1 67
0 4 11
0 3 96
1 3 5
输入2:
50
544 944 200 704 400 150 8 964 666 596 850 608 452 103 988 760 370 723 350 862 856 0 724 544 668 891 575 448 16 613 952 745 990 459 740 960 752 194 335 575 525 12 618 80 618 224 240 600 562 283
10
1 6 6
1 1 3
0 11 78279
0 33 42738
0 45 67270
1 1 26
1 19 24
1 37 39
1 8 13
0 7 64428
Sample Output
输出1:
78
85
输出2:
0
744
77683
856
558
77683
Data Constraint
对于30%的数据,n,q<=500
对于60%的数据,n,q<=5000
对于100%的数据,n,q<=100000,0<=ai,val<=10^9
题解
可以转化成坐标
对于每个点
(x,y)
,
y
表示
显然,对于任意两点,
|Aj−Ai|j−i
求出来的就是斜率
因此,只用找到斜率最大的就可以了
对于
ABC
三点,
lAB
的斜率比
lAC
大
对于
ABD
三点,
lBC
的斜率比
lAD
大
所以,在三点中,一定存在相邻的两点最优
因此
f(A)=max|Ai+1−Ai|
用线段树维护一下
Ai+1−Ai
就行了
代码
#include<cstdio>
#include<algorithm>
#define N 100010
struct node{
long maxx;
node *lc,*rc;
}*head;
void init(node* &now)
{
now=new node;
now->maxx=0;
now->lc=now->rc=NULL;
}
void build(long l,long r,node* &now=head)
{
init(now);
if(l!=r){
long mid=(l+r)>>1;
build(l,mid,now->lc);
build(mid+1,r,now->rc);
}
}
void change(long l,long r,long x,long key,node* &now=head)
{
if(l==r)now->maxx=key;
else{
long mid=(l+r)>>1;
if(x<=mid)
change(l,mid,x,key,now->lc);
else
change(mid+1,r,x,key,now->rc);
now->maxx=std::max(now->lc->maxx,now->rc->maxx);
}
}
long query(long l,long r,long x,long y,node *now=head)
{
if(x<=l&&r<=y)return now->maxx;
else{
long mid=(l+r)>>1,maxx=0;
if(x<=mid)
maxx=std::max(maxx,query(l,mid,x,y,now->lc));
if(y>mid)
maxx=std::max(maxx,query(mid+1,r,x,y,now->rc));
return maxx;
}
}
long a[N];
int main()
{ long n,m,i,x,y,z;
freopen("lipschitz.in","r",stdin);
freopen("lipschitz.out","w",stdout);
scanf("%ld",&n);
build(1,n);
for(i=1;i<=n;i++){
scanf("%ld",&a[i]);
if(i!=1)
change(1,n,i-1,abs(a[i-1]-a[i]));
}
change(1,n,n,a[n]);
scanf("%ld",&m);
for(i=1;i<=m;i++){
scanf("%ld%ld%ld",&x,&y,&z);
if(!x){
a[y]=z;
change(1,n,y-1,abs(a[y-1]-a[y]));
change(1,n,y,abs(a[y]-a[y+1]));
}else
printf("%ld\n",query(1,n,y,z-1));
}
return 0;
}