前言
本篇文章叙述了二分查找的原理,并利用二分查找进行数据的查找。
一、二分查找是什么?
二分查找:也叫折半查找,是一种高效的查找方法。
使用二分查找的条件比较苛刻,要满足一下两个条件:
- 序列的数据有序
- 数据的存储结构为顺序存储结构(如数组)
二、二分查找的应用
2.1 二分查找步骤
二分查找的原理:
每次查找的数据都为序列中的处于中间的数据,然后与目标数据比较大小;每次查找结束,下一次的查找数据量缩小一半。
二分查找的基本步骤如下:.
第一步:将序列的第一个数据的下标(索引)作为左边界,命名为left;
第二步:将序列的最后一个数据的下标(索引)作为右边界,命名为right;
第三步:取左边界和右边界的中间下标(索引)作为第一次查找的数据的下标(索引),命名为mid;
第四步:循环判断,循环条件left <= right
如果mid对应的数据小于目标数据,则left = mid +1;
如果mid对应的数据大于目标数据,则right = mid - 1;
否则,mid对应的数据等于目标数据,查找成功,跳出循环。
最后,如果循环结束还未找到,即left > right,则目标数据不在此序列中。
下面是程序流程图,如图1.1所示:
备注:[mid]表示从序列取下标为mid的数据,target表示要查找的目标数据
2.2二分查找的具体例子演示
假设有一个有序数组:[1,2,3,4,5,6,7,8,9,10],target = 7;
2.2.1 查找过程分析
对以上数据的查找,分析过程如图2.1所示
2.2.2 代码实现
int main() {
int arr[] = { 1,2,3,4,5,6,7,8,9,10 };
int sz = sizeof(arr) / sizeof(arr[0]); //求数组元素个数
int left = 0; //左边界
int right = sz - 1; //右边界
int mid = 0; //中间
int target = 7; //假设为要查找的数
//循环判断
while (left <= right) {
mid = left+(right - left)/2; //取左右边界中间值的方法
if (arr[mid] < target) {
left = mid + 1;
}
else if (arr[mid] > target) {
right = mid - 1;
}
else {
printf("找到了,下标为:%d\n", mid);
break;
}
}
if (left > right) {
printf("没找到\n");
}
return 0;
}
2.2.3 代码分析
对于mid的取值,有两种写法
第一种:mid = (left + right) /2;
第二种:mid = left+(right - left)/2;
第一种写法的问题:当left+right的和值越界时,mid得不到正确的值,因此第一种写法不用。
第二种写法则不会出现这种问题,原理如图2.2: