关于cookie和Session在MAC上的路径存储位置(Safari和Chrome)

Safari浏览器缓存的Cookie在MAC上的存储路径

Safari浏览器存储的Cookie位于个人用户下的隐藏的library文件夹下面
在这里插入图片描述

打开隐藏文件快捷键

Shift+command+.

快捷查看Cookie文件

直接搜索路径 ~/library/cookies

在这里插入图片描述

Chrome浏览器中保存的Cookie在MAC上所在路径

同上直接搜索:

~/library/application support/google/chrome

Session的存储位置查看以及更改

以MAC作为本地回环的服务器,它的Session存储位置可以在php.ini配置文件当中更改。

php.ini配置文件位置

在这里插入图片描述

更改php.ini配置文件

记得去除分号注释后才能够生效,若是不更改配置文件所存储的session将为临时文件,浏览器关闭以后session将自动销毁。
在这里插入图片描述

如有错误请评论指出,将及时修改

在Python中进行基于SessionCookie的模拟登录爬取豆瓣影评,通常需要使用诸如requests库(用于发送HTTP请求),BeautifulSoup库(解析HTML文档),以及处理cookiessession的第三方库如requests.cookiespandas(用于数据处理)。以下是一个简化的步骤代码示例: ```python import requests from bs4 import BeautifulSoup import pandas as pd from requests.cookies import RequestsCookieJar # 第一步:获取登录页面并分析cookiesession信息 login_url = 'https://accounts.douban.com/login' session = requests.Session() # 由于实际网站可能会有CSRF保护,这里假设有一个csrf_token隐藏字段 headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3', 'Referer': login_url, } response = session.get(login_url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') # 获取hidden域的CSRF token或其他必要cookies csrf_token = soup.find('input', {'name': '__csrf_token'})['value'] # 第二步:构造登录数据 data = { 'form_email': 'your_username@example.com', 'form_password': 'your_password', '__csrf_token': csrf_token, } # 发送登录请求 response = session.post(login_url, data=data, headers=headers) # 检查登录是否成功,例如检查是否有登录后的个人主页链接 if 'https://www.douban.com/people/' in response.url: print("登录成功") # 如果需要爬取影评,可以访问特定电影页面,例如: movie_id = '2629205' # 电影ID review_url = f'https://movie.douban.com/subject/{movie_id}/comments' # 使用已经登录的session抓取评论 movie_reviews = session.get(review_url) # 解析HTML,提取评论内容 soup = BeautifulSoup(movie_reviews.text, 'html.parser') reviews = soup.find_all('div', class_='comment-item') # 或者查找适合的评论元素 # 将评论保存到DataFrame reviews_data = [{'username': comment.find('a', class_='comment-header-author').text, 'content': comment.find('span', class_='short').text} for comment in reviews] df = pd.DataFrame(reviews_data) # 输出或保存数据 print(df) ``` 注意:这只是一个基本的框架,实际操作中可能需要处理验证码、反爬虫策略等复杂情况。同时,豆瓣其他网站可能有严格的使用条款IP限制,务必遵守相关规定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值