谈谈量化交易开发

目前在一家中小私募做量化开发程序员,整个交易系统是由C++搭建的,主要交易的品种为期权,期货,股票。

系统的整体架构分为三部分:1.加载信息端 2.交易端 3.行情处理端。

交易端跟行情处理端一般跟券商提供的交易API相同,分为Trader 和MD(Market Data)。交易端就是管理所有下单函数的地方,行情处理端主要是接收所有行情处理的地方,比如行情的深度数据(成交量,价格等)。

Trader端,主要由这3个函数,去完成整个下单逻辑,insert_order,on_order,on_trader。

insert_order:是主要的下订单函数,它往往跟随以下几个操作,判断账户信息,组合订单判断,往内存内写入订单信息,记录order_local id,向券商下订单等(操作比较多,但是都是下订单前的必要操作)。

on_order:订单回报函数,向券商下订单后,券商会返回调用on_order的接口,会包括成交订单的详情(全部成交,部分成交,撤单等)

on_trader:当订单成功成交以后,会返回订单已成交信息,这个函数往往会配有更新数据库或者更新订单仓位内容的信息,处理这个函数的时候,一定要注意仓位的多空方向,一旦写反,可能会导致策略的仓位无法正常平仓等。

 

MD端主要用于处理行情数据,收到的深度行情可以推送给其它服务器。比如Level2的行情数据可以通过组播的形式,从一台服务器推向其他几台服务器,行情数据的稳定性是很重要的,要时刻注意有没有可能出现丢包问题。一般券商推送行情数据,会给2个UDP的数据链路,在行情接收前可以加入一些简单的丢包检测判断,来避免丢包而导致的错误开单。如果配有成套的前端展示界面,可以通过MD端,推送行情到前端界面。笔者这里推送是用Redis服务器做中转的,目前还挺稳定。

 

加载信息端,一般用于盘前操作,主要是处理当天可交易的合约,并将合约信息的张跌停价等做记录,可以作为下单机制的交易限制。

整套交易系统,需要对接很多不同的券商接口,每个API根据券商接口的复杂程度而定,当然会使用大量的底层函数和托管的服务器,以期速度达到最快。笔者目前观察整条下单链路,延时在40-20微秒,暂未仔细了解市场中其他友商的能力。

<think>好的,我现在需要处理用户关于数据科学与大数据技术专业的查询。用户想了解课程设置、就业方向和学习重点。首先,我得回忆一下系统指令里的要求,确保回答符合格式,比如行内数学公式用$...$,独立公式用$$...$$,正确使用LaTeX,用中文回答,生成相关问题,并在引用处添加标识。 首先,用户的问题涉及课程、就业和学习重点,我需要分点回答。根据提供的引用[1],课程设置包括数学、统计学、计算机科学,以及应用领域的知识。需要具体列出核心课程,比如数学基础课如高等数学、线性代数、概率论,这些可能需要用到数学公式,比如概率论中的$P(X=x)$或者线性代数中的矩阵运算$A \cdot B$。统计学部分可能涉及回归分析,比如最小二乘法的公式$$\min \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$。计算机课程如Python、数据结构,这里可以插入代码块示例,比如一个简单的排序算法。大数据技术课程如Hadoop、Spark,机器学习如支持向量机的公式$$\max_{\alpha} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$。应用领域课程如金融大数据分析,可能涉及时间序列模型ARIMA的公式$$\phi(B)(1-B)^d y_t = \theta(B)\epsilon_t$$。 就业方向方面,引用[1]提到大数据处理、挖掘、算法设计、系统开发,可以分行业列举,如互联网、金融、医疗等。岗位如大数据工程师、数据分析师、算法工程师,需要具体说明职责,比如使用Spark处理数据,用TensorFlow构建模型,可能需要提到一些算法,如随机森林或神经网络。 学习重点方面,引用[1]和[2]强调数学基础、编程能力、领域知识。数学部分如矩阵运算$A^T A$,统计中的假设检验p值,编程需要Python、SQL,项目经验如Kaggle竞赛。领域知识如医疗中的图像识别CNN结构$$\text{Conv2D}(filters=32, kernel_size=(3,3))$$。 然后生成相关问题,比如课程难度、自学方法、数学要求等。最后检查引用标识是否添加在正确位置,比如培养目标引用[^1],就业前景引用[^2]。 确保所有公式正确使用LaTeX,行内公式用$...$,独立公式用$$...$$,代码块用三个反引号包裹,语言标注正确。避免使用Markdown格式,保持自然的中文表达,结构清晰分点说明。</think>### 数据科学与大数据技术专业解析 #### 一、课程设置 1. **数学与统计基础** - 核心课程:高等数学、线性代数(如矩阵运算$A \cdot B$)、概率论(如$P(X=x)$)、统计学(如回归分析$$\min \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$) - 进阶课程:随机过程、数值分析(如牛顿迭代法公式$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$) 2. **计算机科学与技术** - 编程语言:Python(示例代码) ```python def fibonacci(n): if n <= 1: return n return fibonacci(n-1) + fibonacci(n-2) ``` - 数据结构与算法:排序算法、图论(如最短路径的Dijkstra算法) - 数据库:SQL(如查询语句`SELECT * FROM table WHERE condition`) 3. **大数据技术核心** - 分布式系统:Hadoop/Spark(如MapReduce框架) - 机器学习:支持向量机公式$$\max_{\alpha} \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j K(x_i, x_j)$$ - 深度学习:卷积神经网络结构$$\text{Conv2D}(filters=64, kernel_size=(5,5))$$ 4. **领域应用课程** - 金融大数据:时间序列分析(如ARIMA模型$$\phi(B)(1-B)^d y_t = \theta(B)\epsilon_t$$) - 医疗大数据:基因组数据处理(如序列比对算法) #### 二、就业方向 1. **行业分布** - 互联网:用户行为分析(如A/B测试中的假设检验$p < 0.05$) - 金融:量化交易模型(如Black-Scholes公式$$C(S,t) = S \cdot N(d_1) - K e^{-r(T-t)} N(d_2)$$) - 医疗:医学影像识别(如使用ResNet进行肿瘤检测) 2. **典型岗位** - **大数据工程师**:负责构建数据管道(如用Spark处理PB级数据) - **数据分析师**:利用可视化工具(如Tableau)生成报告 - **算法工程师**:优化推荐系统(如协同过滤算法$$\text{similarity}(u,v) = \frac{\sum_{i} (r_{ui} - \bar{r}_u)(r_{vi} - \bar{r}_v)}{\sqrt{\sum_{i} (r_{ui} - \bar{r}_u)^2} \sqrt{\sum_{i} (r_{vi} - \bar{r}_v)^2}}$$) #### 三、学习重点 1. **数学能力** - 掌握矩阵分解(如SVD$$A = U \Sigma V^T$$) - 理解概率分布(如正态分布$X \sim \mathcal{N}(\mu, \sigma^2)$) 2. **编程实战** - 熟练使用Pandas进行数据清洗(示例代码) ```python df = pd.read_csv('data.csv') df.dropna(inplace=True) ``` - 参与Kaggle竞赛(如房价预测中的梯度提升树模型) 3. **领域知识** - 金融领域:掌握CAPM模型$$E(R_i) = R_f + \beta_i (E(R_m) - R_f)$$ - 生物信息:熟悉BLAST序列比对算法 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值