线性代数——余子式

n n n 阶行列式中,把元素 a i j a_{ij} aij 所在的第 i i i行和第 j j j列划去后余下的 ( n − 1 ) (n -1) n1阶行列式,称为元素 a i j a_{ij} aij余子式,记为 M i j M_{ij} Mij ;再记:
A i j = ( − 1 ) i + j M i j A_{ij} = (-1)^{i+j}M_{ij} Aij=(1)i+jMij
A i j A_{ij} Aij为元素 a i j a_{ij} aij的代数余子式

M i j M_{ij} Mij A i j A_{ij} Aij均为 ( n − 1 ) (n -1) n1阶行列式;

M i j M_{ij} Mij A i j A_{ij} Aij只与 a i j a_{ij} aij的位置有关,与 a i j a_{ij} aij是什么无关

例子

例如,对三阶行列式
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \left| \begin{matrix} a_{11}& a_{12}& a_{13}\\ a_{21}& a_{22}& a_{23}\\ a_{31}& a_{32}& a_{33}\\ \end{matrix} \right| a11a21a31a12a22a32a13a23a33
元素 a 11 a_{11} a11的余子式和代数余子式分别为:
∣ a 11 − − ∣ a 22 a 23 ∣ a 32 a 33 ∣ \left| \begin{matrix} a_{11}& -& -\\ |& a_{22}& a_{23}\\ |& a_{32}& a_{33}\\ \end{matrix} \right| a11a22a32a23a33
= = > ==> ==>
M 11 = ∣ a 22 a 23 a 32 a 33 ∣ , A 11 = ( − 1 ) 1 + 1 M 11 = M 11 = ∣ a 22 a 23 a 32 a 33 ∣ M_{11} = \left| \begin{matrix} a_{22}& a_{23}\\ a_{32}& a_{33}\\ \end{matrix} \right|,\\ A_{11} = (-1)^{1+1}M_{11}=M_{}11 = \left| \begin{matrix} a_{22}& a_{23}\\ a_{32}& a_{33}\\ \end{matrix} \right| M11=a22a32a23a33,A11=(1)1+1M11=M11=a22a32a23a33
元素 a 12 a_{12} a12的余子式和代数余子式分别为:
∣ − a 12 − a 21 ∣ a 23 a 31 ∣ a 33 ∣ \left| \begin{matrix} -& a_{12}& -\\ a_{21}& |& a_{23}\\ a_{31}& |& a_{33}\\ \end{matrix} \right| a21a31a12a23a33
= = > ==> ==>
M 12 = ∣ a 21 a 23 a 31 a 33 ∣ , A 12 = ( − 1 ) 1 + 2 M 12 = − M 12 = − ∣ a 21 a 23 a 31 a 33 ∣ M_{12} = \left| \begin{matrix} a_{21}& a_{23}\\ a_{31}& a_{33}\\ \end{matrix} \right|,\\ A_{12} = (-1)^{1+2}M_{12}=-M_{12} = - \left| \begin{matrix} a_{21}& a_{23}\\ a_{31}& a_{33}\\ \end{matrix} \right| M12=a21a31a23a33,A12=(1)1+2M12=M12=a21a31a23a33

性质

行列式等于它的任一行(或列)的所有元素分别与其所对应的代数余子式乘积之和,
即:
按行:
D = ∑ j = 1 n a i j A i j , i ∈ ( 1 , 2 , . . . , n ) 或 D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n D = \sum_{j = 1}^n{a_{ij}A_{ij}},i\in(1,2,...,n)\\ 或D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in} D=j=1naijAij,i(1,2,...,n)D=ai1Ai1+ai2Ai2+...+ainAin
按列:
D = ∑ i = 1 n a i j A i j , j ∈ ( 1 , 2 , . . . , n ) 或 D = a 1 j A 1 j + a 2 j A 2 j + . . . + a n j A n j D = \sum_{i = 1}^n{a_{ij}A_{ij}},j\in(1,2,...,n)\\ 或D=a_{1j}A_{1j}+a_{2j}A_{2j}+...+a_{nj}A_{nj} D=i=1naijAij,j(1,2,...,n)D=a1jA1j+a2jA2j+...+anjAnj

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ACxz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值