行列式与矩阵的初等变换总结

行列式

n n n阶行列式,有以下5种变换:

  1. 转置后,值不变.即 ∣ A T ∣ = ∣ A ∣ |A^T| = |A| AT=A.
  2. 某行有公因数 k k k,可以把 k k k提到行列式外.
    ∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
  3. 两行互换行列式变号.
  4. 某行所有元素都是两个数的和,则可写成两个行列式的和.
    ∣ a 1 + b 1 a 2 + b 2 c c ∣ = ∣ a 1 a 2 c c ∣ + ∣ b 1 b 2 c c ∣ \left| \begin{matrix} a_1+b_1& a_2+b_2\\ c& c\\ \end{matrix} \right|=\left| \begin{matrix} a_1& a_2\\ c& c\\ \end{matrix} \right|+\left| \begin{matrix} b_1& b_2\\ c& c\\ \end{matrix} \right| a1+b1ca2+b2c=a1ca2c+b1cb2c
  5. 某行的 k k k倍加至另一行,行列式的值不变.
    详细

矩阵

m × n m \times n m×n矩阵,下列三种变换:

  1. 用非零常数 k k k乘矩阵的某一行.
  2. 互换矩阵某两行(列)的位置.
  3. 把某行(列)的 k k k倍加至另一行(列).
    详细
  • 6
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
行列式是一个非常重要的概念,它是线性代数中的一个基础知识点。下面是关于行列式的性质和初等变换的介绍: 1. 行列式的定义:对于一个 $n$ 阶方阵 $A=(a_{ij})$,它的行列式定义为 $|A|=\sum_{\sigma\in S_n}(-1)^{\sigma}a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}$,其中 $S_n$ 表示 $n$ 个元素的置换群,$\sigma$ 是 $S_n$ 中的一个置换,$(-1)^{\sigma}$ 表示置换 $\sigma$ 的奇偶性。 2. 行列式的性质: - 行列式与它的转置矩阵行列式相等,即 $|A|=|A^T|$。 - 如果矩阵 $A$ 的某一行(或某一列)全为 $0$,则 $|A|=0$。 - 如果矩阵 $A$ 的两行(或两列)交换,则行列式变号,即 $|A|=-|A'|$,其中 $A'$ 是交换后的矩阵。 - 如果矩阵 $A$ 的某一行(或某一列)乘以一个数 $k$,则行列式也乘以 $k$,即 $|kA|=k^n|A|$,其中 $n$ 是矩阵的阶数。 - 如果矩阵 $A$ 的某一行(或某一列)加上另一行(或另一列)的 $k$ 倍,则行列式不变,即 $|A|=|A'|$,其中 $A'$ 是变换后的矩阵。 3. 初等变换:对于一个矩阵 $A$,我们可以通过三种基本的初等变换来得到一个新的矩阵 $B$,它们分别是: - 交换矩阵的两行(或两列); - 用一个非零数 $k$ 乘矩阵的某一行(或某一列); - 把矩阵的某一行(或某一列)加上另一行(或另一列)的 $k$ 倍。 通过这些初等变换,我们可以把一个矩阵变成一个行阶梯形矩阵或者一个简化的行阶梯形矩阵,从而方便计算它的行列式和求解线性方程组。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ACxz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值