线性代数学习笔记——行列式计算(针对期末与考研)

化上(下)三角形法

化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。这是计算行列式的基本方法重要方法之一。因为利用行列式的定义容易求得上(下)三角形行列式或对角形行列式的性质将行列式化为三角形行列式计算。

∣ a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . a n 1 a n 2 . . . a n n ∣ = = > ∣ b 11 b 12 . . . b 1 n 0 b 22 . . . b 2 n . . . . . . . . . . . . 0 0 . . . b n n ∣ = b 11 b 22 . . . b n n \left| \begin{matrix} a_{11}& a_{12}& ...& a_{1n}\\ a_{21}& a_{22}& ...& a_{2n}\\ ...& ...& ...& ...\\ a_{n1}& a_{n2}& ...& a_{nn}\\ \end{matrix} \right| ==> \left| \begin{matrix} b_{11}& b_{12}& ...& b_{1n}\\ 0& b_{22}& ...& b_{2n}\\ ...& ...& ...& ...\\ 0& 0& ...& b_{nn}\\ \end{matrix} \right| = b_{11}b_{22}...b_{nn} a11a21...an1a12a22...an2............a1na2n...ann==>b110...0b12b22...0............b1nb2n...bnn=b11b22...bnn

例一

计算行列式:
D = ∣ 1 1 − 1 2 − 1 − 1 − 4 1 2 4 − 6 1 1 2 4 2 ∣ D = \left|\begin{matrix} 1& 1& -1& 2&\\ -1& -1& -4& 1& \\ 2& 4& -6& 1& \\ 1& 2& 4& 2& \\ \end{matrix} \right| D=1121114214642112

解: D ⇒ { r 2 + r 1 r 3 − 2 r 1 r 4 − r 1 ∣ 1 1 − 1 2 0 0 − 5 3 0 2 − 4 − 3 0 1 5 0 ∣ ⇒ r 2 ↔ r 4 ∣ 1 1 − 1 2 0 1 5 0 0 2 − 4 − 3 0 0 − 5 3 ∣ D \xRightarrow{\left\{ \begin{array}{l} r_2+r_1\\ r_3-2r_1\\ r_4-r_1\\ \end{array} \right.} \left|\begin{matrix} 1& 1& -1& 2&\\ 0& 0& -5& 3& \\ 0& 2& -4& -3& \\ 0& 1& 5& 0& \\ \end{matrix} \right| \xRightarrow{{r_2}\leftrightarrow{r_4}} \left|\begin{matrix} 1& 1& -1& 2&\\ 0& 1& 5& 0& \\ 0& 2& -4& -3& \\ 0& 0& -5& 3& \\ \end{matrix} \right| D{r2+r1r32r1r4r1 1000102115452330r2r4 1000112015452033
⇒ r 3 − 2 r 2 ∣ 1 1 − 1 2 0 1 5 0 0 0 − 14 − 3 0 0 − 5 3 ∣ ⇒ r 4 − 5 14 r 3 ∣ 1 1 − 1 2 0 1 5 1 0 0 − 14 − 3 0 0 0 57 14 ∣ = 57 \xRightarrow{r_3-2r_2} \left|\begin{matrix} 1& 1& -1& 2&\\ 0& 1& 5& 0& \\ 0& 0& -14& -3& \\ 0& 0& -5& 3& \\ \end{matrix} \right| \xRightarrow{r_4-\frac{5}{14}r_3} \left|\begin{matrix} 1& 1& -1& 2&\\ 0& 1& 5& 1& \\ 0& 0& -14& -3& \\ 0& 0& 0& \frac{57}{14}& \\ \end{matrix} \right| = 57 r32r2 10001100151452033r4145r3 10001100151402131457=57

例二

计算行列式:
D = ∣ a b c d a a + b a + b + c a + b + c + d a 2 a + b 3 a + 2 b + c 4 a + 3 b + 2 c + d a 3 a + b 6 a + 3 b + c 10 a + 6 b + 3 c + d ∣ D = \left|\begin{matrix} a& b& c& d&\\ a& a+b& a+b+c& a+b+c+d& \\ a& 2a+b& 3a+2b+c& 4a+3b+2c+d& \\ a& 3a+b& 6a+3b+c& 10a+6b+3c+d& \\ \end{matrix} \right| D=aaaaba+b2a+b3a+bca+b+c3a+2b+c6a+3b+cda+b+c+d4a+3b+2c+d10a+6b+3c+d

解: D ⇒ { r 4 − r 3 r 3 − r 2 r 2 − r 1 ∣ a b c d 0 a a + b a + b + c 0 a 2 a + b 3 a + 2 b + c 0 a 3 a + b 6 a + 3 b + c ∣ D \xRightarrow{\left\{ \begin{array}{l} r_4-r_3\\ r_3-r_2\\ r_2-r_1\\ \end{array} \right.} \left|\begin{matrix} a& b& c& d&\\ 0& a& a+b& a+b+c& \\ 0& a& 2a+b& 3a+2b+c& \\ 0& a& 3a+b& 6a+3b+c& \\ \end{matrix} \right| D{r4r3r3r2r2r1 a000baaaca+b2a+b3a+bda+b+c3a+2b+c6a+3b+c
⇒ { r 4 − r 3 r 3 − r 2 ∣ a b c d 0 a a + b a + b + c 0 0 a 2 a + b 0 0 a 3 a + b ∣ \xRightarrow{\left\{ \begin{array}{l} r_4-r_3\\ r_3-r_2\\ \end{array} \right.} \left|\begin{matrix} a& b& c& d&\\ 0& a& a+b& a+b+c& \\ 0& 0& a& 2a+b& \\ 0& 0& a& 3a+b& \\ \end{matrix} \right| {r4r3r3r2 a000ba00ca+baada+b+c2a+b3a+b
⇒ r 4 − r 3 ∣ a b c d 0 a a + b a + b + c 0 0 a 2 a + b 0 0 0 a ∣ = a 4 \xRightarrow{r_4-r_3} \left|\begin{matrix} a& b& c& d&\\ 0& a& a+b& a+b+c& \\ 0& 0& a& 2a+b& \\ 0& 0& 0& a& \\ \end{matrix} \right| = a^4 r4r3 a000ba00ca+ba0da+b+c2a+ba=a4

降阶法

降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

例三

通过降阶法对例一进行计算:
解:

  1. 化简

D ⇒ { r 2 + r 1 r 3 − 2 r 1 r 4 − r 1 ∣ 1 1 − 1 2 0 0 − 5 3 0 2 − 4 − 3 0 1 5 0 ∣ D \xRightarrow{\left\{ \begin{array}{l} r_2+r_1\\ r_3-2r_1\\ r_4-r_1\\ \end{array} \right.} \left|\begin{matrix} 1& 1& -1& 2&\\ 0& 0& -5& 3& \\ 0& 2& -4& -3& \\ 0& 1& 5& 0& \\ \end{matrix} \right| D{r2+r1r32r1r4r1 1000102115452330
2. 展开:
∣ 1 1 − 1 2 0 0 − 5 3 0 2 − 4 − 3 0 1 5 0 ∣ = ∑ j = 1 4 a j 1 A j 1 = ∣ 0 − 5 3 2 − 4 − 3 1 5 0 ∣ \left|\begin{matrix} 1& 1& -1& 2&\\ 0& 0& -5& 3& \\ 0& 2& -4& -3& \\ 0& 1& 5& 0& \\ \end{matrix} \right| = \sum_{j=1}^4{a_{j1}A_{j1}}= \left|\begin{matrix} 0& -5& 3& \\ 2& -4& -3& \\ 1& 5& 0& \\ \end{matrix} \right| 1000102115452330=j=14aj1Aj1=021545330
⇒ r 2 − 2 r 3 ∣ 0 − 5 3 0 − 14 − 3 1 5 0 ∣ = ∑ j = 1 3 a j 1 A j 1 = ∣ − 5 3 − 14 − 3 ∣ \xRightarrow{r_2-2r_3} \left|\begin{matrix} 0& -5& 3& \\ 0& -14& -3& \\ 1& 5& 0& \\ \end{matrix} \right| = \sum_{j=1}^3{a_{j1}A_{j1}}= \left|\begin{matrix} -5& 3& \\ -14& -3& \\ \end{matrix} \right| r22r3 0015145330=j=13aj1Aj1=51433
⇒ r 1 + r 2 ∣ − 19 0 − 14 − 3 ∣ = 57 \xRightarrow{r_1+r_2} \left|\begin{matrix} -19& 0& \\ -14& -3& \\ \end{matrix} \right| = 57 r1+r2 191403=57

n阶行列式计算

递推行列式计算

另类符号行列式计算

证明范德蒙(Vandermonde)行列式

陆续更新。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ACxz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值