无题

这一段没有写blog,一直没什么心情。
e_mag电子杂志,很久都没有消息了。本来我应该负责,但人有些懒惰,大家也都没有消息,所以有种想放弃的感觉。
在社区也不是很顺利。一些事情很看不惯。
我曾经在腾讯社区呆过,申请过几次的版主,但几乎都没有成功。因为我不喜欢“显”。我很少写东西,但写的东西应该都可以算比较好的吧。即使不好的,我也会换一个号发,我认为,一个号码,代表自己,就应该是精品。
但是,抢眼的永远都是表现好的人,别的不说,混脸熟最重要。
也许我年纪比较大,秉承的还是一种比较传统的观点,这些观点看来在现在并不很适用。
小山来的时候,直接就申请版主,一堆不认识的人来捧场,我熟悉的好像一个都没出来。
小山当时也给我留言说要支持,我直接告诉他,先混脸熟再申请。
小山好像做的很不错的样子,脸熟现在是够了,但水准实在说不上。
从我个人来说,灌水的事情原先我也常做,我要灌水的栏目就是我写的各种灌水文章。
但我一向认为,灌水也是要讲职业道德的,不是什么乱七八糟的都往上面来。
csdn,我个人认为是一个提问回答的地方。有人有不清楚的问题,就在论坛上提出,大家帮忙解决。我也一向秉承这样的理念。
这里面就有一种道德问题,自己不清楚的问题是否可以回答。
《如何在软件工程/管理中骗分》其实说明了我的看法,可惜恐怕大家都认为我在灌水,没人注意。
我的回答几乎都是使用最直接的方式回答,看我的结帖也可以看出来,平均60~70%的结帖分数都是在我这里。
但有的人不是这样,准备几个帖子,分类,把所有能找到的东西都塞进去,不管别人问的是什么,好,是问rose的,给你rose的连接;cvs的,给你cvs的链接;vss的,给你vss的链接,至于题目是什么,是否能回答别人的问题,“我只看题目给链接,你说的是啥我不知道”。
要说资料,我这里应该算比较全了吧,Bugzillia,96M;CC,21M;CQ,17M;cvs,205M;LR,43M;robot,92M;TD,21M……,但我做不出来给资料让自己找的事情,我自己找都费事呢。
这个问题我曾经留短信提醒过,有人还回复和我犟,我也就没有理会。
已经多次发生我回复解答后,有人再次乱给链接的事情,这也是我有些气愤的原因。
写这篇算不上很厚道,但既然版主对于一些不在版务内的问题不理会,做为外人,只能从道理甚至说道德的角度随便说说。
现在我很少去社区了,既然有人能回答所有的问题,我还有存在的必要吗?
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,广泛应用于图像处理、计算机视觉和模式识别等领域。物体识别是OpenCV的一个重要应用场景,以下是一些常见的物体识别方法和技术: 1. **特征提取与匹配**: - **SIFT(尺度不变特征变换)**和**SURF(加速稳健特征)**:这些算法用于检测和描述局部特征,能够在图像中识别出相同的物体,即使它们的大小、旋转或光照条件发生变化。 - **ORB(定向快速旋转BRIEF)**:一种快速的特征检测和描述算法,适用于实时应用。 2. **模板匹配**: - 通过在图像中滑动一个模板(已知物体的图像),并计算模板与图像区域的相似度,来找到物体的位置。 3. **机器学习与深度学习**: - **支持向量机(SVM)**:用于分类和回归分析,可以用于物体识别任务。 - **卷积神经网络(CNN)**:深度学习模型,特别适合处理图像数据,能够自动学习图像的特征并进行分类。 4. **目标检测算法**: - **Haar级联分类器**:基于积分图和AdaBoost算法,用于实时人脸检测。 - **YOLO(You Only Look Once)**和**SSD(Single Shot MultiBox Detector)**:实时目标检测算法,能够在单次前向传播中同时进行目标定位和分类。 5. **实例分割**: - **Mask R-CNN**:在目标检测的基础上,进一步分割出目标的精确轮廓。 OpenCV提供了丰富的API和工具,可以方便地实现上述方法。以下是一个简单的示例代码,展示如何使用OpenCV进行模板匹配: ```python import cv2 import numpy as np # 读取原始图像和模板图像 original_image = cv2.imread('original_image.jpg') template = cv2.imread('template.jpg') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) w, h = template_gray.shape[::-1] # 转换为灰度图 gray_original = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) # 模板匹配 result = cv2.matchTemplate(gray_original, template_gray, cv2.TM_CCOEFF_NORMED) threshold = 0.8 loc = np.where(result >= threshold) # 绘制矩形框 for pt in zip(*loc[::-1]): cv2.rectangle(original_image, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) # 显示结果 cv2.imshow('Detected', original_image) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值