12、基于事件触发机制的分布式优化算法解析

基于事件触发机制的分布式优化算法解析

1. 引言

在分布式优化问题中,同时考虑事件触发通信方案和通信网络的有限数据速率是一个具有挑战性的问题。本文将详细介绍一种基于事件触发机制的分布式(次)梯度算法,包括其量化优化算法的设计、主要结果的证明以及收敛速率的分析。

2. 量化优化算法
2.1 动态方程

考虑代理 $i$ 可获取其个体目标函数 $f_i(x)$ 的(次)梯度 $Df_i(x_i(k))$,其动态由一阶线性差分方程描述:
[x_i(k + 1) = x_i(k) + h [u_i(k) - g(k)Df_i(x_i(k))]]
其中,$k = 0, 1, \cdots$;$u_i(k) \in R^n$ 是代理 $i$ 的分布式控制输入,待设计;$h > 0$ 是网络控制增益。

2.2 控制输入构造

基于动态事件触发编码 - 解码方案,构造控制输入 $u_i(k)$ 为:
[u_i(k) = \sum_{j = 1}^{N^+(k)} a_{ij}(k)\hat{x} {ji}(k {j}^{t_j}) - \sum_{j = 1}^{N^-(k)} a_{ji}(k)\xi_{ij}(k_{i}^{t_i})]
其中,$k \in [k_{i}^{t_i}, k_{i}^{t_{i + 1}})$,$k_{i}^{t_{i + 1}}$ 表示代理 $i$ 在 $k_{i}^{t_i}$ 之后的下一个事件触发时间点,由个体采样事件确定。

2.3 测量误差与采样事件设计

定义代理 $i$ 与通

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值