文章目录
前言
“工欲善其事,必先利其器”,这里我们来搭建一套高效的 Python 开发环境,为后续的数据分析做准备。
关于高效作业,对于需要编写 Python 代码进行数据分析的工作而言,主要涉及两个方面。
1. 一款具备强大的自动完成和错误提示的开发工具
Python 丰富的函数库和组件库是这门语言强大的核心原因,但我们不可能去记忆所有的方法名和参数名,往往只能记住一些常用的或者某个方法开头的几个字母。这个时候一个好的开发工具就需要能聪明地“猜”出你想输入的代码,并给出候选列表方便你选择(类似于输入法的字词提示功能)。
另外,当你输入错误的时候,这个工具能够提示你具体是哪里错了,建议改成什么,从而大幅提升编写效率。在别人还在查到底是哪个单词拼错了导致代码跑不起来的时候,你已经写完一个完整的模块了。
2. 掌握快捷键
Python 数据分析需要边写边看结果,甚至每写两行代码就需要点击运行、新建文本段落、代码段落等操作。所以熟练地掌握快捷键,可以使绝大多数的操作都不需要鼠标,手不用离开键盘就能完成,起到事半功倍的效果。
整个配置过程相比传统的环境安装稍微多了几步,不过并不复杂,只需要跟着一步一步操作就可以。
搭建环境的版本说明如下: Anaconda3.0
VS Code 1.51.1
实际并无太多版本限制,你安装最新版即可。
第一步、数据科学增强版的 Python 环境:Anaconda
Anaconda 是一个 Python 数据科学工具包,里面包含了 Python 做数据计算最常用的库和工具,属于必装软件。目前它已经非常成熟,并且整套 Anaconda 可以免费提供给个人使用。
1. 用浏览器访问 Anaconda 的个人版页面:www.anaconda.com/products/in… ,点击 Download,页面会自动跳转到具体的下载页面:
2. 根据自己的设备类型 (Mac/Windows),选择合适的安装包版本。 无论 Windows 还是 Mac, 都选择 Graphical Installer,它代表图形化的安装器,之后更易于使用。
3. 下载之后双击安装包进行安装(如图所示),直接点击 Next。
4. 接下来就是使用协议界面,点击 I Agree,代表同意使用协议。
5. 之后连续 Next,可以看到选择安装位置的界面,如果没有特殊的需求,直接默认位置就好,继续点击 Next。
6. 最后一个配置界面是高级选项,不用更改,直接点击 Install,等待 2~3 分钟之后,即可完成安装。
安装完毕之后,可以从程序中找到 Anaconda Navigator,点击打开就可以看到整套 Anaconda3 的所有工具(如下图所示):<