为了弄懂大语言模型原理和技术细节,笔者计划展开系列学习,并将所学内容从简单到复杂的过程给大家做分享,希望能够体系化的认识大模型技术的内涵。本篇文章作为第一讲,先列出大模型使用到了哪些技术,目的在于对大模型使用的技术有个整体认知。后续我们讲一一详细讲解这些技术概念并解剖其背后原理。
正文开始
大语言模型(LLMs)在人工智能领域通常指的是参数量巨大、能够处理复杂任务的深度学习模型。这些模型使用的技术主要包括以下几个方面:
- 深度神经网络(Deep Neural Networks, DNNs)
大模型通常是深度神经网络的一种,具有多层结构,能够学习数据的复杂表示。
2. 反向传播算法(Backpropagation)
这是训练神经网络中广泛使用的一种算法,通过计算损失函数关于模型参数的梯度来更新权重。
3. 激活函数(Activation Functions)
如ReLU、Sigmoid、Tanh等,用于引入非线性特性,使得神经网络能够学习和模拟复杂函数。
4. 优化算法(Optimization Algorithms)
如随机梯度下降(SGD)、Adam、RMSprop等,用于调整网络参数以最小化损失函数。
5. 正则化技术(Regularization Techniques)
如L1/L2正则化、Dropout、Batch Normalization等,用于防止模型过拟合。