自主智能体的未来:LangChain Agents如何实现复杂任务自动化

一、AI Agents 基础:ReAct 范式

在AI领域,智能体(Agents)指的是能够自主感知环境并采取行动以实现特定目标的系统。ReAct(Reasoning and Acting)范式是理解智能体的基础,它强调智能体在执行任务时的推理和行动能力。智能体通过持续地感知环境、推理和采取行动,不断优化其行为,以实现预定目标。

图片

示例代码:简单的ReAct智能体

class ReActAgent:
    def __init__(self, environment):    
        self.environment = environment  # 初始化环境
        
    def perceive(self):   
        return self.environment.get_state()  # 感知环境状态
        
    def reason(self, state):     
        if state == 'goal_state':       
            return 'achieve_goal'  # 如果状态是目标状态,则采取实现目标的行动        
        else:       
            return 'take_action'  # 否则,采取行动改变状态
            
    def act(self, action):   
        if action == 'achieve_goal':        
            self.environment.goal_achieved = True  # 实现目标        
        else:        
            self.environment.change_state()  # 改变环境状态
            
class Environment:
    def __init__(self):     
       self.state = 'initial_state'  # 初始状态        
       self.goal_achieved = False  # 目标未实现
       
    def get_state(self):
       return self.state  # 获取当前状态
       
    def change_state(self):  
       self.state = 'goal_state'  # 改变状态为目标状态

# 创建环境和智能体
env = Environment()
agent = ReActAgent(env)

# 智能体感知、推理和行动的循环
while not env.goal_achieved:
    state = agent.perceive()    
    action = agent.reason(state)    
    agent.act(action)

二、LangChain Agent: 构建复杂应用的代理系统

LangChain是一种强大的工具,帮助开发者构建复杂的应用代理系统。LangChain Agents结合语言模型(LLM)和其他工具,实现了高效的任务决策和执行。系统核心在于根据环境和任务目标,动态地决定下一步的动作,从而实现复杂任务的自动化处理。

图片

示例代码:LangChain Agent基础

from langchain import LangChainAgent, LLM
	
class CustomLangChainAgent(LangChainAgent):
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值