一、AI Agents 基础:ReAct 范式
在AI领域,智能体(Agents)指的是能够自主感知环境并采取行动以实现特定目标的系统。ReAct(Reasoning and Acting)范式是理解智能体的基础,它强调智能体在执行任务时的推理和行动能力。智能体通过持续地感知环境、推理和采取行动,不断优化其行为,以实现预定目标。
示例代码:简单的ReAct智能体
class ReActAgent:
def __init__(self, environment):
self.environment = environment # 初始化环境
def perceive(self):
return self.environment.get_state() # 感知环境状态
def reason(self, state):
if state == 'goal_state':
return 'achieve_goal' # 如果状态是目标状态,则采取实现目标的行动
else:
return 'take_action' # 否则,采取行动改变状态
def act(self, action):
if action == 'achieve_goal':
self.environment.goal_achieved = True # 实现目标
else:
self.environment.change_state() # 改变环境状态
class Environment:
def __init__(self):
self.state = 'initial_state' # 初始状态
self.goal_achieved = False # 目标未实现
def get_state(self):
return self.state # 获取当前状态
def change_state(self):
self.state = 'goal_state' # 改变状态为目标状态
# 创建环境和智能体
env = Environment()
agent = ReActAgent(env)
# 智能体感知、推理和行动的循环
while not env.goal_achieved:
state = agent.perceive()
action = agent.reason(state)
agent.act(action)
二、LangChain Agent: 构建复杂应用的代理系统
LangChain是一种强大的工具,帮助开发者构建复杂的应用代理系统。LangChain Agents结合语言模型(LLM)和其他工具,实现了高效的任务决策和执行。系统核心在于根据环境和任务目标,动态地决定下一步的动作,从而实现复杂任务的自动化处理。
示例代码:LangChain Agent基础
from langchain import LangChainAgent, LLM
class CustomLangChainAgent(LangChainAgent):