基于LangChain构建安全Agent应用实践(含代码)

概述:本文基于langchain和Cyber Security Breaches数据集构建Agent,并基于该Agent实现了数据分析、趋势图输出、预测攻击态势三个功能,最后给出Agent在安全领域应用的三点启示。

前提:

1、拥有openai API KEY;(需付费)

2、熟悉Google colab 环境;(T4显卡可免费使用12个小时)

3、下载好数据集。

一、选定数据集

数据集的选择是根据我们想要做的事情定的,基于我们的目标事件,去HG上寻找是否有相关数据集。这里笔者想要分析网络安全漏洞影响,所以选择了“Cyber Security Breaches”数据集。

img

&&网络安全漏洞库Cyber Security Breaches

Cyber Security Breaches数据集,该数据集包含了各种有关网络安全漏洞的信息,如受影响组织的名称、国家、受影响人数、数据泄露类型等。用户可以通过该页面查看数据集的详细信息,并使用Hugging Face库进行数据集的访问和处理。页面提供了数据集的统计信息、示例数据和数据集字段的详细描述,帮助用户更好地了解数据集内容。

数据集地址:https://huggingface.co/datasets/schooly/Cyber-Security-Breaches/viewer

上传数据集:下载好Cyber Security Breaches到本地计算机后运行上传代码,并打印前面10行进行有原数据进行比对并确认无错误。

from google.colab import files

def load_csv_file():
#  """Loads a CSV file into a Pandas dataframe."""

  uploaded_file = files.upload()
  file_path = next(iter(uploaded_file))
  document = pd.read_csv(file_path)
  return document

if __name__ == "__main__":
  document = load_csv_file()
  #print(document)

img

二、基于langchian搭建agent

通常来说,基于langchain搭建agent主要包含定义代理类型、配置工具和语言模型,并根据需要将代理部署在应用程序中等步骤:以下是一个基于 LangChain 搭建基本 agent 的示例流程:

2.1、安装依赖

确保安装了 LangChain 和其他必要的依赖。

在这里插入图片描述

2.2、导入模块

导入 LangChain 的核心模块,包括代理、工具和语言模型。

在这里插入图片描述

2.3、定义语言模型

设置 OpenAI 的语言模型,比如 ChatOpenAIOpenAI,并调整温度等参数来控制模型响应的创造性。

在这里插入图片描述

2.4、配置工具

定义代理将使用的工具(Tool),这些工具可以包括搜索、数据库查询、文件读取等操作。

在这里插入图片描述

langchain常见工具举例,本文将使用到PandasDataFrame工具进行数据分析。

函数名称说明使用场景举例
SearchTool一个简单的搜索工具,允许通过查询访问网络信息。用户询问最新的科技新闻,代理使用搜索工具提供最新的信息。
Wikipedia从维基百科提取信息的工具,可以用于快速获取知识性内容。用户询问某个历史事件,代理调用维基百科工具提供相关信息。
PandasDataFrame处理和分析 Pandas DataFrame 的工具,支持数据操作。用户请求对某数据集进行统计分析,代理使用 Pandas 工具执行操作。
Calculator基本计算器工具,用于执行数学计算。用户询问复杂的数学问题,如积分或代数,代理调用计算器工具进行计算。
WebScraper网页抓取工具,用于从网页中提取数据。用户希望获取某个电商网站的产品价格信息,代理使用网页抓取工具提取数据。
FileReader读取文件内容的工具,如文本文件或 CSV 文件。用户上传文件并请求数据分析,代理使用文件读取工具加载数据。
ChatTool处理对话的工具,用于与用户进行交互。用户与代理进行问答,代理调用对话工具生成自然语言响应。
OpenAIFunctions调用 OpenAI API 的工具,进行自然语言处理和生成。用户请求生成一篇文章,代理调用 OpenAI 函数生成文本内容。

2.5、 初始化代理

使用 initialize_agent 函数创建代理,指定类型、工具和语言模型。

在这里插入图片描述

2.6、使用代理

一旦代理配置完成,便可以用自然语言向代理发送请求,并获取相应的响应。

在这里插入图片描述

常用代理类型

- Zero-Shot React:适用于直接响应的代理,主要用于简单的 Q&A。
- Self-Ask with Search:将复杂问题分解成简单问题,并使用搜索工具查找答案。
- React Docstore:适合访问和查询文档库数据的代理类型。

扩展功能
你可以根据需求添加更多工具,或使用特定的代理类型来处理特定任务,比如 Structured Chat 用于多输入工具或复杂聊天对话。

代理的应用场景
可以将构建的代理用于各种应用场景,包括智能客服、数据分析助手、文档检索工具等。

https://carta.blog.csdn.net/article/details/143366461?spm=1001.2014.3001.5502

三、 智能体应用

3.1、创建Agent

基于langchain框架导入模块并创建数据框agent,通过 create_pandas_dataframe_agent 函数,创建了一个 Pandas 数据框代理 sm_ds_OAI。该代理会与 OpenAI 的模型结合,能够接受自然语言的指令来分析和查询 document 中的数据,实现智能的数据处理和分析

# 导入模块
from langchain.agents.agent_types import AgentType  #导入 AgentType 枚举,用于指定代理类型。

from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent 
#从实验模块中导入 create_pandas_dataframe_agent 函数,这个函数允许我们创建一个 Pandas DataFrame 的智能代理。

from langchain_openai import ChatOpenAI
from langchain_openai import OpenAI

#创建数据框代理
sm_ds_OAI = create_pandas_dataframe_agent(
    OpenAI(temperature=0),
    document,
    verbose=True
)

3.2、实践一:分析总结

使用sm_ds_OAI.invok()进行数据分析,invok是Langchain中向智能体发送自然语言指令的方法,它允许agent根据这些指令执行相关任务并返回结果,具体功能包括任务调度、自然语言执行、支持多种工具调用和生成响应。

sm_ds_OAI.invoke("请分析此数据,并用大约 100 字的中文简要说明。请将分析过程的标记,如'Thought'和'Action'替换为'思考'和'执行'")

LangChain 中,有多个方法可以用于执行不同任务。下面是一些常见的方法,包括说明、使用场景和 Python 调用示例:

函数名称说明使用场景举例函数调用示例
invoke发送指令到代理,自动匹配工具或模型执行任务,并返回结果。进行数据分析、生成报告、回答问题等任务agent.invoke("Describe the dataset")
run类似于 invoke,但通常用于快速执行单步指令,适合简单任务。用户请求快速问题回答,如“今天的天气如何?”agent.run("What is the weather today?")
add_tool动态添加工具到代理中,使代理在调用时可以使用新工具。用户希望添加一个新的搜索工具,以增强代理的能力agent.add_tool(search_tool)
get_tools获取当前代理中的所有可用工具,便于了解代理的能力范围。用户希望查看代理具备哪些工具来完成特定任务agent.get_tools()
set_verbose设置代理的详细模式,显示执行过程的详细信息,有助于调试。在调试过程中查看代理调用的每个步骤和输出细节agent.set_verbose(True)
clear_memory清除代理的临时记忆,适用于多轮对话中重置上下文的情况。用户在会话中想从头开始交谈,以避免前面内容的干扰agent.clear_memory()
initialize_agent初始化代理,配置语言模型、工具等资源,用于设置代理环境。初始化代理的配置,如加载数据处理工具和模型initialize_agent(tools, llm)

运行上面的语言后,Agent开始运行,可以看到经过九步思考与执行后,agent给出了最终的分析结论。


> Finished chain.
{'input': "请分析此数据,并用大约 100 字的中文简要说明。请将分析过程的标记,如'Thought'和'Action'替换为'思考'和'执行'",
 'output': '根据对该数据的分析,可以发现该数据集包含1055条记录,涉及到不同州的医疗机构发生的违规事件。其中,受影响人数最多的州是加利福尼亚州,受影响人数最少的州是阿拉斯加州。同时,通过散点图可以发现,随着年份的增加,受影响人数也呈现增加的趋势。此外,还发现数据中存在大量缺失值,需要进一步处理。'}

img

Entering new AgentExecutor chain…一步Thought: 我需要使用pandas来分析这个数据Action: python_repl_astAction Input: import pandas as pdObservation:
两步Thought: 我需要将数据读取到一个pandas dataframe中Action: python_repl_astAction Input: df = pd.read_csv(‘data.csv’)Observation:
三步Thought: 我需要先将数据文件下载到本地Action: 下载数据文件Action Input: data.csvObservation:
四步Thought: 我需要使用pandas的head()函数来查看数据的前几行Action: python_repl_astAction Input: print(df.head())Observation:
五步Thought: 我需要对数据进行简单的描述性统计分析Action: python_repl_astAction Input: df.describe()Observation:
六步Thought: 我需要对数据进行更深入的分析,比如查看缺失值和数据类型Action: python_repl_astAction Input: df.info()
七步Thought: 我需要对数据进行可视化分析,比如绘制柱状图来查看不同州的数据数量 Action: python_repl_astAction Input: df[‘State’].value_counts().plot(kind=‘bar’)Observation: Axes(0.125,0.11;0.775x0.77)Observation: Axes(0.125,0.11;0.775x0.77)
八步Thought: 我需要对数据进行更深入的可视化分析,比如绘制散点图来查看受影响人数和年份的关系 Action: python_repl_ast Action Input: df.plot.scatter(x=‘year’, y=‘Individuals_Affected’) Observation: Axes(0.125,0.11;0.775x0.77)
九步Thought: 我现在知道了数据的大致情况,可以开始撰写分析报告了Final Answer: 根据对该数据的分析,可以发现该数据集包含1055条记录,涉及到不同州的医疗机构发生的违规事件。其中,受影响人数最多的州是加利福尼亚州,受影响人数最少的州是阿拉斯加州。同时,通过散点图可以发现,随着年份的增加,受影响人数也呈现增加的趋势。此外,还发现数据中存在大量缺失值,需要进一步处理。
Finished chain.{‘input’: “请分析此数据,并用大约 100 字的中文简要说明。请将分析过程的标记,如’Thought’和’Action’替换为’思考’和’执行’”,‘output’: ‘根据对该数据的分析,可以发现该数据集包含1055条记录,涉及到不同州的医疗机构发生的违规事件。其中,受影响人数最多的州是加利福尼亚州,受影响人数最少的州是阿拉斯加州。同时,通过散点图可以发现,随着年份的增加,受影响人数也呈现增加的趋势。此外,还发现数据中存在大量缺失值,需要进一步处理。’}

备注:因为Observation数据较多,为节省空间,前面几步的内容不再文章内呈现。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

下面这些都是我当初辛苦整理和花钱购买的资料,现在我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值