概述:本文基于langchain和Cyber Security Breaches数据集构建Agent,并基于该Agent实现了数据分析、趋势图输出、预测攻击态势三个功能,最后给出Agent在安全领域应用的三点启示。
前提:
1、拥有openai API KEY;(需付费)
2、熟悉Google colab 环境;(T4显卡可免费使用12个小时)
3、下载好数据集。
一、选定数据集
数据集的选择是根据我们想要做的事情定的,基于我们的目标事件,去HG上寻找是否有相关数据集。这里笔者想要分析网络安全漏洞影响,所以选择了“Cyber Security Breaches”数据集。
&&网络安全漏洞库Cyber Security Breaches
Cyber Security Breaches数据集,该数据集包含了各种有关网络安全漏洞的信息,如受影响组织的名称、国家、受影响人数、数据泄露类型等。用户可以通过该页面查看数据集的详细信息,并使用Hugging Face库进行数据集的访问和处理。页面提供了数据集的统计信息、示例数据和数据集字段的详细描述,帮助用户更好地了解数据集内容。
数据集地址:https://huggingface.co/datasets/schooly/Cyber-Security-Breaches/viewer
上传数据集:下载好Cyber Security Breaches到本地计算机后运行上传代码,并打印前面10行进行有原数据进行比对并确认无错误。
from google.colab import files
def load_csv_file():
# """Loads a CSV file into a Pandas dataframe."""
uploaded_file = files.upload()
file_path = next(iter(uploaded_file))
document = pd.read_csv(file_path)
return document
if __name__ == "__main__":
document = load_csv_file()
#print(document)
二、基于langchian搭建agent
通常来说,基于langchain搭建agent主要包含定义代理类型、配置工具和语言模型,并根据需要将代理部署在应用程序中等步骤:以下是一个基于 LangChain 搭建基本 agent
的示例流程:
2.1、安装依赖
确保安装了 LangChain
和其他必要的依赖。
2.2、导入模块
导入 LangChain
的核心模块,包括代理、工具和语言模型。
2.3、定义语言模型
设置 OpenAI 的语言模型,比如 ChatOpenAI
或 OpenAI
,并调整温度等参数来控制模型响应的创造性。
2.4、配置工具
定义代理将使用的工具(Tool),这些工具可以包括搜索、数据库查询、文件读取等操作。
langchain常见工具举例,本文将使用到PandasDataFrame工具进行数据分析。
函数名称 | 说明 | 使用场景举例 |
---|---|---|
SearchTool | 一个简单的搜索工具,允许通过查询访问网络信息。 | 用户询问最新的科技新闻,代理使用搜索工具提供最新的信息。 |
Wikipedia | 从维基百科提取信息的工具,可以用于快速获取知识性内容。 | 用户询问某个历史事件,代理调用维基百科工具提供相关信息。 |
PandasDataFrame | 处理和分析 Pandas DataFrame 的工具,支持数据操作。 | 用户请求对某数据集进行统计分析,代理使用 Pandas 工具执行操作。 |
Calculator | 基本计算器工具,用于执行数学计算。 | 用户询问复杂的数学问题,如积分或代数,代理调用计算器工具进行计算。 |
WebScraper | 网页抓取工具,用于从网页中提取数据。 | 用户希望获取某个电商网站的产品价格信息,代理使用网页抓取工具提取数据。 |
FileReader | 读取文件内容的工具,如文本文件或 CSV 文件。 | 用户上传文件并请求数据分析,代理使用文件读取工具加载数据。 |
ChatTool | 处理对话的工具,用于与用户进行交互。 | 用户与代理进行问答,代理调用对话工具生成自然语言响应。 |
OpenAIFunctions | 调用 OpenAI API 的工具,进行自然语言处理和生成。 | 用户请求生成一篇文章,代理调用 OpenAI 函数生成文本内容。 |
2.5、 初始化代理
使用 initialize_agent
函数创建代理,指定类型、工具和语言模型。
2.6、使用代理
一旦代理配置完成,便可以用自然语言向代理发送请求,并获取相应的响应。
常用代理类型
- Zero-Shot React:适用于直接响应的代理,主要用于简单的 Q&A。
- Self-Ask with Search:将复杂问题分解成简单问题,并使用搜索工具查找答案。
- React Docstore:适合访问和查询文档库数据的代理类型。扩展功能
你可以根据需求添加更多工具,或使用特定的代理类型来处理特定任务,比如Structured Chat
用于多输入工具或复杂聊天对话。代理的应用场景
可以将构建的代理用于各种应用场景,包括智能客服、数据分析助手、文档检索工具等。https://carta.blog.csdn.net/article/details/143366461?spm=1001.2014.3001.5502
三、 智能体应用
3.1、创建Agent
基于langchain框架导入模块并创建数据框agent,通过 create_pandas_dataframe_agent
函数,创建了一个 Pandas 数据框代理 sm_ds_OAI
。该代理会与 OpenAI 的模型结合,能够接受自然语言的指令来分析和查询 document
中的数据,实现智能的数据处理和分析
# 导入模块
from langchain.agents.agent_types import AgentType #导入 AgentType 枚举,用于指定代理类型。
from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent
#从实验模块中导入 create_pandas_dataframe_agent 函数,这个函数允许我们创建一个 Pandas DataFrame 的智能代理。
from langchain_openai import ChatOpenAI
from langchain_openai import OpenAI
#创建数据框代理
sm_ds_OAI = create_pandas_dataframe_agent(
OpenAI(temperature=0),
document,
verbose=True
)
3.2、实践一:分析总结
使用sm_ds_OAI.invok()进行数据分析,invok是Langchain中向智能体发送自然语言指令的方法,它允许agent根据这些指令执行相关任务并返回结果,具体功能包括任务调度、自然语言执行、支持多种工具调用和生成响应。
sm_ds_OAI.invoke("请分析此数据,并用大约 100 字的中文简要说明。请将分析过程的标记,如'Thought'和'Action'替换为'思考'和'执行'")
在 LangChain
中,有多个方法可以用于执行不同任务。下面是一些常见的方法,包括说明、使用场景和 Python 调用示例:
函数名称 | 说明 | 使用场景举例 | 函数调用示例 |
---|---|---|---|
invoke | 发送指令到代理,自动匹配工具或模型执行任务,并返回结果。 | 进行数据分析、生成报告、回答问题等任务 | agent.invoke("Describe the dataset") |
run | 类似于 invoke ,但通常用于快速执行单步指令,适合简单任务。 | 用户请求快速问题回答,如“今天的天气如何?” | agent.run("What is the weather today?") |
add_tool | 动态添加工具到代理中,使代理在调用时可以使用新工具。 | 用户希望添加一个新的搜索工具,以增强代理的能力 | agent.add_tool(search_tool) |
get_tools | 获取当前代理中的所有可用工具,便于了解代理的能力范围。 | 用户希望查看代理具备哪些工具来完成特定任务 | agent.get_tools() |
set_verbose | 设置代理的详细模式,显示执行过程的详细信息,有助于调试。 | 在调试过程中查看代理调用的每个步骤和输出细节 | agent.set_verbose(True) |
clear_memory | 清除代理的临时记忆,适用于多轮对话中重置上下文的情况。 | 用户在会话中想从头开始交谈,以避免前面内容的干扰 | agent.clear_memory() |
initialize_agent | 初始化代理,配置语言模型、工具等资源,用于设置代理环境。 | 初始化代理的配置,如加载数据处理工具和模型 | initialize_agent(tools, llm) |
运行上面的语言后,Agent开始运行,可以看到经过九步思考与执行后,agent给出了最终的分析结论。
> Finished chain.
{'input': "请分析此数据,并用大约 100 字的中文简要说明。请将分析过程的标记,如'Thought'和'Action'替换为'思考'和'执行'",
'output': '根据对该数据的分析,可以发现该数据集包含1055条记录,涉及到不同州的医疗机构发生的违规事件。其中,受影响人数最多的州是加利福尼亚州,受影响人数最少的州是阿拉斯加州。同时,通过散点图可以发现,随着年份的增加,受影响人数也呈现增加的趋势。此外,还发现数据中存在大量缺失值,需要进一步处理。'}
Entering new AgentExecutor chain…一步 | Thought: 我需要使用pandas来分析这个数据Action: python_repl_astAction Input: import pandas as pdObservation: |
---|---|
两步 | Thought: 我需要将数据读取到一个pandas dataframe中Action: python_repl_astAction Input: df = pd.read_csv(‘data.csv’)Observation: |
三步 | Thought: 我需要先将数据文件下载到本地Action: 下载数据文件Action Input: data.csvObservation: |
四步 | Thought: 我需要使用pandas的head()函数来查看数据的前几行Action: python_repl_astAction Input: print(df.head())Observation: |
五步 | Thought: 我需要对数据进行简单的描述性统计分析Action: python_repl_astAction Input: df.describe()Observation: |
六步 | Thought: 我需要对数据进行更深入的分析,比如查看缺失值和数据类型Action: python_repl_astAction Input: df.info() |
七步 | Thought: 我需要对数据进行可视化分析,比如绘制柱状图来查看不同州的数据数量 Action: python_repl_astAction Input: df[‘State’].value_counts().plot(kind=‘bar’)Observation: Axes(0.125,0.11;0.775x0.77)Observation: Axes(0.125,0.11;0.775x0.77) |
八步 | Thought: 我需要对数据进行更深入的可视化分析,比如绘制散点图来查看受影响人数和年份的关系 Action: python_repl_ast Action Input: df.plot.scatter(x=‘year’, y=‘Individuals_Affected’) Observation: Axes(0.125,0.11;0.775x0.77) |
九步 | Thought: 我现在知道了数据的大致情况,可以开始撰写分析报告了Final Answer: 根据对该数据的分析,可以发现该数据集包含1055条记录,涉及到不同州的医疗机构发生的违规事件。其中,受影响人数最多的州是加利福尼亚州,受影响人数最少的州是阿拉斯加州。同时,通过散点图可以发现,随着年份的增加,受影响人数也呈现增加的趋势。此外,还发现数据中存在大量缺失值,需要进一步处理。 |
Finished chain. | {‘input’: “请分析此数据,并用大约 100 字的中文简要说明。请将分析过程的标记,如’Thought’和’Action’替换为’思考’和’执行’”,‘output’: ‘根据对该数据的分析,可以发现该数据集包含1055条记录,涉及到不同州的医疗机构发生的违规事件。其中,受影响人数最多的州是加利福尼亚州,受影响人数最少的州是阿拉斯加州。同时,通过散点图可以发现,随着年份的增加,受影响人数也呈现增加的趋势。此外,还发现数据中存在大量缺失值,需要进一步处理。’} |
备注:因为Observation数据较多,为节省空间,前面几步的内容不再文章内呈现。
如何学习大模型
现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。
作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。
下面这些都是我当初辛苦整理和花钱购买的资料,现在我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来
,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线
很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。
二、AI大模型视频教程
三、AI大模型各大学习书籍
四、AI大模型各大场景实战案例
五、结束语
学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。
再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。
因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。