最近,DeepSeek在全网爆火,各行各业也都开始部署自己本地化的环境,第一批使用DeepSeek“搞钱”的人也出现了。那么,DeepSeek到底是什么?本地环境又如何部署呢?本文将带领大家搭建部署属于自己的DeepSeek模型。
一、DeepSeek到底是什么?
DeepSeek是由杭州深度求索人工智能基础技术研究有限公司(简称“深度求索”)开发的一款先进AI应用。它集自然语言处理(NLP)、计算机视觉(CV)、语音识别等多个领域的先进技术于一体,为用户提供了高效、便捷的AI模型训练、部署和应用服务。DeepSeek不仅是一个平台,更是一个生态系统,涵盖了从数据准备、模型训练到部署应用的全流程,为用户提供了全方位的支持。主要代表产品:DeepSeek R1、DeepSeek V3等。
- DeepSeek R1:在科研、技术开发、教育等领域得到了广泛的应用。例如,在生成逻辑严谨的技术文档或学术论文、提升智能客服复杂任务解决效率以及帮助内容创作者生成高质量技术文章等方面,都发挥了重要作用。
- DeepSeek V3:在智能客服、代码生成、长文本处理等场景中得到了广泛的应用。其卓越的性能为用户带来了高效、优质的服务体验。
DeepSeek作为一款功能强大的AI工具,其R1和V3系列模型在各自领域都展现出了出色的性能和广泛的应用前景。无论是对于科研工作者、技术开发人员还是广大AI爱好者来说,DeepSeek都是一个值得关注和探索的AI平台。
二、本地环境又如何部署呢?
对于DeepSeek本地化部署,本文将按照以下内容进行DeepSeek模型的部署。
1、 安装Ollama
(1)官网下载:https://ollama.com/
(2)选择版本
(3)下载完成后双击进行安装,安装完成之后桌面右下角会显示ollama图标
2、安装docker
(1)官网下载:https://www.docker.com/
(2)下载完成后双击进行安装。安装完成之后页面如下
3、安装模型
(1)进入到ollama官网的首页,点击搜索框,可以看到许多模型,这里我们下载deepseek-r1。
(2)选择不同的版本,我们这里选择的是7b。选择版本可根据自己电脑的配置进行选择,
(3)安装 deepseek-r1:7b 模型
ollama run deepseek-r1:7b
(4)安装完成后,进行测试。
4、安装dify
下载地址:
https://link.zhihu.com/?target=https%3A//github.com/langgenius/dify
安装dify环境
(1)根目录找到docker文件夹,将 .env.example 文件重命名.env。
(2)右键打开命令行运行下面命令
docker compose up -d
(3)运行结束后,docker桌面客户端可看到dify所需要的环境都已想、成功安装。
(4)在浏览器地址栏输入查看
http://127.0.0.1/install
需要设置管理员账号。
然后进行登录
进去页面如下:
5、将本地大模型与dify关联
(1)配置docker下的env文件,代码如下:
(2)配置大模型
点击右上角账号信息,进入设置选项。
然后点击模型供应商,选择Ollama,添加模型。
填写对应的模型名称,基础URL信息。
保存之后如下所示
6、创建应用
(1)创建空白应用
(2)选择应用类型并起名,这里选择聊天助手,起名测试聊天,然后点击创建。
(3)进去之后在右上角配置模型
(4)模型配置完成之后进行测试
搭建完成,收工!!!
最后,希望看到的朋友们能够积极行动起来,做出自己的AI应用!
别怕脚步沉重,山巅的日出永远值得攀爬——你比自己想象的更强大,每一步都藏着改变命运的密码。
DeepSeek无疑是2025开年AI圈的一匹黑马,在一众AI大模型中,DeepSeek以低价高性能的优势脱颖而出。DeepSeek的上线实现了AI界的又一大突破,各大科技巨头都火速出手,争先抢占DeepSeek大模型的流量风口。
DeepSeek的爆火,远不止于此。它是一场属于每个人的科技革命,一次打破界限的机会,一次让普通人也能逆袭契机。
DeepSeek的优点
掌握DeepSeek对于转行大模型领域的人来说是一个很大的优势,目前懂得大模型技术方面的人才很稀缺,而DeepSeek就是一个突破口。现在越来越多的人才都想往大模型方向转行,对于想要转行创业,提升自我的人来说是一个不可多得的机会。
那么应该如何学习大模型
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
大模型岗位需求越来越大,但是相关岗位人才难求,薪资持续走高,AI运营薪资平均值约18457元,AI工程师薪资平均值约37336元,大模型算法薪资平均值约39607元。
掌握大模型技术你还能拥有更多可能性:
• 成为一名全栈大模型工程师,包括Prompt,LangChain,LoRA等技术开发、运营、产品等方向全栈工程;
• 能够拥有模型二次训练和微调能力,带领大家完成智能对话、文生图等热门应用;
• 薪资上浮10%-20%,覆盖更多高薪岗位,这是一个高需求、高待遇的热门方向和领域;
• 更优质的项目可以为未来创新创业提供基石。
可能大家都想学习AI大模型技术,也想通过这项技能真正达到升职加薪,就业或是副业的目的,但是不知道该如何开始学习,因为网上的资料太多太杂乱了,如果不能系统的学习就相当于是白学。为了让大家少走弯路,少碰壁,这里我直接把都打包整理好,希望能够真正帮助到大家。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【
保证100%免费
】
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】