- 博客(902)
- 收藏
- 关注
原创 三分钟带你掌握Function Calling
🌐 Function Calling(函数调用)本质是 一种让 AI(尤其是大模型)调用外部工具 / 服务的 “指令协议”。它把大模型的 “自然语言理解” 转换成机器可执行的 “结构化指令”,让 AI 从 “只说不做” 的文本生成,变成能 “动手做事” 的工具使用者。大模型本身无法直接操作数据库、调用 API、控制硬件,但通过 Function Call,它能完成 “需求→指令→结果→回答” 的闭环:
2026-02-22 08:45:00
129
原创 RAG项目第五集:前端页面的开发和展示
这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。即可打开本地电脑的8501端口,可以在本地用浏览器访问,也可以远端浏览器用ip加端口的形式访问,页面是这样的。
2026-02-21 10:15:00
739
原创 RAG项目第四集:RAG功能的实现
但是有一点问题,交互不友好,没有页面,用户不太可能安装以上的软件,下一集,我们将使用streamlit开发一个类chatgpt的交互界面,完成可交付的整个项目的开发。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
2026-02-20 11:45:00
1051
原创 大模型领域落地应知必会(2): 轻量化微调
Prompt Tuning是一种通过改变输入提示语(input prompt)以获得更优模型效果的技术。
2026-02-19 08:15:00
1082
原创 落地领域大模型应知必会 (1) :主要微调方法总览
本文我们将简要介绍上下文学习(in-context learning)的含义,并介绍对LLMs进行微调的各种可行方式。
2026-02-18 09:30:00
1125
原创 十分钟带你认识大模型和生成式AI和其常见误解
这款程序展现出了绝无仅有的人机交互体验,能够充分理解人类自然语言,可以用人类自然对话方式来交互,让人们分不清和自己对话的是人还是机器。
2026-02-17 07:32:04
556
原创 【LLM大模型】Prompt Engineering——Prompt编写模式
提示工程(Prompt Engineering)是LLM中一种技术,应用于开发或优化提示词(Prompt),帮助用户有效地将语言模型应用于各种场景和研究领域。
2026-02-16 09:00:00
600
原创 Prompt Engineering -- 如何充分利用大型语言模型的能力?
本文介绍了ChatGPT所依赖的大型语言模型 (LLM) 所具备的一些能力,以及这些能力的来源。之后介绍了Prompt Engineering的概念,通过几个例子解释了Prompt是如何发挥LLM所具备的能力的。
2026-02-16 07:15:00
619
原创 RAG项目第三集:自定义LLM大模型类的构建
这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。
2026-02-15 11:30:00
620
原创 RAG项目第二集:知识图谱embedding到向量数据库
所以笔者认为,应该是it或者业务部门构建企业的数据集后,先embdding到向量数据库内,在给大模型的提示中,写明,让大模型根据检索数据回答。
2026-02-15 07:15:00
627
原创 RAG实战项目第一集:大模型的本地加载和提供API接口
大模型的本地加载和提供API接口已经完成了,接下来就是embedding 数据库了,请看RAG项目第二集:知识图谱embeddings向量数据库。
2026-02-14 10:15:00
1094
原创 保姆级教程:从0手写RAG智能问答系统,接入Qwen大模型|Python实战
在大模型落地的众多路径中,RAG(检索增强生成)是几乎“最值得掌握”的一项技术。它将知识库与大模型结合,让模型不仅“知道”,还能“答得准、说得清”。
2026-02-14 08:00:00
1097
原创 终于!GLM-4-9B 支持 Ollama 部署
GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。在语义、数学、推理、代码和知识等多方面的数据集测评中, GLM-4-9B 在各项能力上均表现出卓越的能力。
2026-02-13 09:45:00
600
原创 AI应用(智能体Agent)架构设计详解
多数场景下,企业开发AI应用常面临:接入或扩展企业已有业务系统并加入AI功能;接入三方系统或AI应用;从0构建AI应用并接入已有业务数据。
2026-02-12 10:30:00
1147
原创 大模型Agent开发框架哪家强?12项Agent开发框架入门与选型
本篇分享笔者将深入对比当前最流行的10大Agent开发框架,从核心特性到适用场景,为大家梳理清晰的学习路径和选型指南!
2026-02-12 07:00:00
539
原创 《AI原生应用架构白皮书》深度解读(附310页白皮书下载)
不同于传统软件开发通过编程与算法构建的确定性逻辑,AI 时代的应用构建以面对自然语言编程、上下文工程为核心特征,将复杂业务逻辑与决策过程下沉至模型推理环节,从而实现业务的智能化自适应。
2026-02-11 09:30:00
554
原创 一个开源的大语言模型(LLM)微调框架——LLaMA-Factory
LLaMA-Factory 是一个开源的大语言模型(LLM)微调框架,旨在简化大规模语言模型的微调过程。该项目提供了一个用户友好的界面和全面的工具集,支持从数据准备到模型部署的完整流程。
2026-02-11 07:30:00
1172
原创 LLM大模型:LlamaIndex中的CustomLLM(本地加载模型)
LlamaIndex 中接口基本上调用的是 OpenAI,如果想想调用自定义模型可以吗?答案当然是可以的。经过查找找到了自定义大语言模型的简单抽象基类 class CustomLLM(LLM)。
2026-02-10 09:14:20
630
原创 从Llama-1到Llama-3,细数LLaMA的发展
这些模型不仅在技术上不断刷新纪录,更在商业和学术界产生了深远的影响。因此,对Llama模型不同版本之间的系统对比,不仅可以揭示技术进步的具体细节,也能帮助我们理解这些高级模型如何解决现实世界的复杂问题。
2026-02-10 09:14:15
542
原创 超大模型部署无压力!一键运行 Llama 3.1 405B 和 Mistral Large 2
Llama 3.1 这厢才问鼎王座,那厢 Mistral AI 就正面硬刚,发布 Mistral Large 2 并直指 405B 模型的「软肋」——难部署。
2026-02-09 15:40:27
561
原创 提示工程(prompt engineering):技术分类与提示词调优看这篇就够了
在人工智能盛起的当下,出现了一个新兴的行业——提示工程(prompt engineering)。提示词,简言之,就是我们和AI说的话。在人机交互模式下,一个好的提示词,往往能产生事半功倍的效果。
2026-02-08 11:00:00
356
原创 体验智能体构建过程:从零开始构建Agent
智能体的复杂程度各不相同,从简单的响应式智能体(对刺激直接做出反应)到更高级的智能体(能够学习和适应)都有。
2026-02-08 09:00:00
1010
原创 探索LangGraph:如何创建一个既智能又可控的航空客服AI
首先,定义图的状态。我们的状态和LLM调用与第二部分相同。python复制代码# 如果LLM碰巧返回了一个空响应,我们将重新提示它# 以获得一个实际的响应。):messages = state["messages"] + [("user", "请给出真实的输出。")]messages = state["messages"] + [("user", "请给出真实的输出。")]else:break# Haiku更快更便宜,但准确性较低# 你可以更新LLMs,尽管你可能需要更新提示。
2026-02-07 09:41:33
355
原创 本地部署Qwen3小参数版本实测:并非鸡肋
都说本地部署大模型是鸡肋,真的是这样吗?今天,咱们就来实际测试一下,看看Qwen3小参数版本在本地部署后的表现究竟如何。
2026-02-07 09:38:10
632
原创 LLM大模型应用开发初探 : 基于Coze创建Agent(附教程)
最近学习了一门课程《AI Agent入门实战》,了解了如何在Coze平台上创建AI Agent,发现它对我们个人(C端用户)而言十分有用,分享给你一下。
2026-02-07 09:37:59
602
原创 干货保真系列 | 一篇文章带你搞定RAGFlow从本地部署到构建个人专属Agent助手
大家好,今天手把手带大家一站式部署应用开源项目RAGFlow,轻松get你的个人知识库和专属Agent助手~
2026-02-06 11:21:34
363
原创 保姆级教程:零代码基础也能微调Qwen3,并本地部署
我将在本文介绍如何通过 unsloth 框架以 LoRA 的方法微调 Qwen3-14B 模型。
2026-02-06 11:20:47
347
原创 大模型书籍丨2026爆火全网的LLM大模型黑书!入门大模型大家全都在学~
今天给大家推荐一本4月份才新出的大型语言模型(LLM)的权威教程《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》!Google工程总监Antonio Gulli作序,一堆大佬推荐!这含金量不用多说,不多bb开始介绍!
2026-02-05 15:42:48
552
原创 大模型入门指南 - Prompt Engineering:小白也能看懂的“提示词工程”全解析
当你说“随便弄杯喝的”,大模型可能端出板蓝根泡咖啡的黑暗料理;但当你精准描述“少冰三分糖的杨枝甘露加脆波波”,它才会秒变资深奶茶师。
2026-02-05 15:42:14
493
原创 LLM大模型微调 LLaMA详细指南(准备环境、数据、配置微调参数+微调过程)
微调 LLaMA(Large Language Model Meta AI)大模型是一个重要的步骤,能够使模型适应特定的任务或数据集,提高其在特定应用场景下的表现。
2026-02-03 11:33:46
563
原创 独家分享 | 构建大型语言模型应用:一份详细的指南(附链接)
本文到这里就接近尾声了,但这仅仅是一个开始。LLM 原生应用的开发是一个不断迭代的过程,它会涵盖越来越多的用例和功能,也会面临各种各样的挑战,而我们也需要不断探索,力求打造更加完善的 LLM 原生产品。
2026-02-03 11:32:51
474
原创 2025 AI人才薪资榜:这5类岗位最紧缺,附详细技能清单
想入行AI却不知道选什么方向?2025年AI人才需求已清晰分层——从核心技术研发到跨行业落地,甚至伦理合规,每个领域都有明确的“高薪技能密码”。
2026-02-03 11:32:06
518
原创 打造自己的大模型|03篇 使用llama.cpp量化并在Mac上私有部署ChatGPT
本篇文章,我们将对微调之后的大模型,进行量化处理,并在本地部署打造一个属于我们自己的ChatGPT。
2026-02-03 11:31:14
597
原创 打造自己的大模型-02篇|LoRA微调大模型的评测和导出
在之前的的文章《打造自己的大模型|01篇LLaMA-Factory微调Llama3和其占用资源分析》,我们通过训练了9.5小时,完成了Llama3-8B-Instruct的LoRA 微调训练。
2026-02-03 11:29:53
609
原创 打造自己的大模型-01篇|LLaMA-Factory微调Llama3和其占用资源分析
由于原生的Llama3模型训练的中文语料占比非常低,因此在中文的表现方面略微欠佳!本教程就以Llama3-8B-Instruct开源模型为模型基座,通过开源程序LLaMA-Factory来进行中文的微调,提高Llama3的中文能力!
2026-02-03 11:29:08
587
原创 豆瓣评分 9.5,海外疯传,这本大模型书凭什么圈粉全球无数程序员?
由 GitHub 超 4 万星项目 LLMs-from-scratch 作者、大模型公司 Lightning AI 工程师塞巴斯蒂安·拉施卡编写的《从零构建大模型》!
2026-02-02 10:57:27
181
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅