图解大模型计算加速系列:vLLM源码解析3,块管理器(BlockManager)上篇

vllm块管理器又分成朴素块管理器(UncachedBlockAllocator)prefix caching型块管理器(CachedBlockAllocator)。本篇我们先讲比较简单的前者,下篇我们来细看更有趣也是更难的后者。

【全文目录如下】  
【1】前情提要  
【2】两种不同类型的BlockAllocator  
【3】物理块和逻辑块结构  
【4】UncachedBlockAllocator  
4.1 在调度器中,什么时候会用到BlockAllocator  
4.2 为waiting队列中的seq_group分配prefill需要的物理块  
4.3 为running/swapped队列中的seq_group分配decode需要的物理块  
  

【1】前情提要

在之前对调度器策略(Scheduler)的讲解中,主要说明了以下几点:

  • 从vLLM批处理的入口函数开始,介绍了其推理内核LLMEngine的两个重要函数add_request()和step()

  • 在LLMEngine开始处理请求前(实例化阶段),它会先做一次模拟实验,来估计gpu上需要预留多少显存给KV Cache block。

  • 当LLMEngine开始处理请求时(add_request),它会把每个prompt当成一个请求,同时把它包装成一个SequenceGroup对象。

  • 当LLMEngine开始执行1次调度时(step),调度器策略(Scheduler)会选择要送哪些seq_group去做新一轮推理。注意,在1次推理中,所有seq_group要么一起做prefill,要么一起做decode。

同时,我们遗留了以下问题

  • 问题1:vLLM的物理块管理(block manager)的细节,包括物理块结构,逻辑块-物理块映射,物理块新增与释放,prefix caching等等

  • 问题2:step()其余步骤:调度器只是决定了要送哪些seq_group去做推理,但是“每1个推理阶段结束后,如何根据推理结果更新seq_group,并将其送入下一次调度”这块不是调度器的职责,这也是后面我们要讲解的“step()的其余步骤”.

今天我们就要对问题1进行解答。问题2我们放在源码解读第四篇进行讲解。

【2】两种不同类型的BlockAllocator

在[源码解读2]中,我们画过Schduler的架构图,它的下面维护着今天我们要细讲的块管理器(BlockManager),这也是vLLM自定义的一个class。

截止本文写作时,vLLM提供了BlockSpaceManagerV1BlockSpaceManagerV2两个版本的块管理器。V1是vLLM默认的版本,V2是改进版本(但还没开发完,例如不支持prefix caching等功能)。所以本文依然基于BlockSpaceManagerV1进行讲解。

BlockManager这个class下又维护着两个重要属性:

1).BlockAllocator物理块分配者,负责实际为seq做物理块的分配、释放、拷贝等操作。其下又分成self.gpu_allocatorself.cpu_allocator两种类型,分别管理gpu和cpu上的物理块。

2).self.block_tables负责维护每个seq下的物理块列表,本质上它是一个字典,形式如{seq_id: List[PhysicalTokenBlock]}。注意,这个字典维护着【所有】seq_group下seq的物理块,而不是单独某一个seq的。因为调度器是全局的,所以它下面的的BlockManager自然也是全局的。

其中,BlockAllocator又分成两种类型:

1).CachedBlockAllocator按照prefix caching的思想来分配和管理物理块。在原理篇中,我们提过又些prompts中可能含有类似system message(例如,“假设你是一个能提供帮助的行车导航”)等prefix信息,带有这些相同prefix信息的prompt完全可以共享用于存放prefix的物理块,这样既节省显存,也不用再对prefix做推理。

2).UncachedBlockAllocator正常分配和管理物理块,没有额外实现prefix caching的功能。

在块管理器的上篇中,介绍UncachedBlockAllocator,在下篇中我们介绍更为复杂的CachedBlockAllocator

【3】物理块和逻辑块结构

首先我们来快速回顾下在vllm中一个物理块和一个逻辑块长什么样子。

物理块结构(一切尽在注释中):

# vllm/block.py  
class PhysicalTokenBlock:  
    """Represents the state of a block in the KV cache."""  
  
    def __init__(  
        self,  
        device: Device,  
        block_number: int,  
        block_size: int,  
        block_hash: int,  
        num_hashed_tokens: int,  
    ) -> None:  
        # ==============================================================  
        # 设备,gpu/cpu  
        # ==============================================================  
        self.device = device  
        # ==============================================================  
        # 该物理块在对应设备上的全局block index  
        # ==============================================================  
        self.block_number = block_number  
        # ==============================================================  
        # 该物理块的尺寸(即槽位数量,默认为16)  
        # ==============================================================  
        self.block_size = block_size  
        # ==============================================================  
        # 该物理块的hash值  
        # (在prefix caching场景下使用,非此场景则附值为-1)  
        # ==============================================================  
        self.block_hash = block_hash   
        # ==============================================================  
        # 该物理块的hash值是由多少个前置token计算而来的  
        # (prefix caching场景下使用,非此场景则附值为0)  
        # ==============================================================  
        self.num_hashed_tokens = num_hashed_tokens   
        # ==============================================================  
        # 该物理块被多少个逻辑块引用  
        # ==============================================================  
        self.ref_count = 0  
        # ==============================================================  
        # 该物理块最后一次被使用的时间  
        # (prefix caching场景下使用,非此场景则附值为-1)  
        # ==============================================================  
        self.last_accessed = DEFAULT_LAST_ACCESSED_TIME  
        # ==============================================================  
        # 该物理块是否被计算过  
        # (prefix caching场景下使用)  
        # ==============================================================  
        self.computed = False  
  
    def __repr__(self) -> str:  
        return (f'PhysicalTokenBlock(device={self.device}, '  
                f'block_number={self.block_number}, '  
                f'num_hashed_tokens={self.num_hashed_tokens}, '  
                f'ref_count={self.ref_count}, '  
                f'last_accessed={self.last_accessed}, '  
                f'computed={self.computed})')  

这里有一些和prefix caching相关的物理块属性,大家现在可能还看得一头雾水,不要担心,在块管理器的下篇中我们再来细讲,这里可以忽略。

逻辑块结构(一切尽在注释中):

# # vllm/block.py  
class LogicalTokenBlock:  
    """A block that stores a contiguous chunk of tokens from left to right.  
  
    Logical blocks are used to represent the states of the corresponding  
    physical blocks in the KV cache.  
      
    KV cache的逻辑块  
    """  
  
    def __init__(  
        self,  
        block_number: int, # 逻辑块的序号  
        block_size: int, # 每个逻辑块中有多少个槽位(默认为16)  
    ) -> None:  
        self.block_number = block_number  
        self.block_size = block_size  
  
        # 逻辑块刚初始化时,将其中的每个token_id都初始化为_BLANK_TOKEN_ID(-1)  
        self.token_ids = [_BLANK_TOKEN_ID] * block_size   
        # 当前逻辑块中已经装下的token的数量  
        self.num_tokens = 0  
  
    def is_empty(self) -> bool:  
        """判断当前逻辑块是为空"""  
        return self.num_tokens == 0  
  
    def get_num_empty_slots(self) -> int:  
        """当前逻辑块的空余槽位"""  
        return self.block_size - self.num_tokens  
  
    def is_full(self) -> bool:  
        """判断当前逻辑块是否已经被装满"""  
        return self.num_tokens == self.block_size  
  
    def append_tokens(self, token_ids: List[int]) -> None:  
        """将给定的一些token_ids装入当前逻辑块中"""  
        # 给定的token_ids的长度必须 <= 当前逻辑块剩余的槽位  
        assert len(token_ids) <= self.get_num_empty_slots()  
        # 当前逻辑块第一个空槽的序号  
        curr_idx = self.num_tokens  
        # 将这些tokens装进去  
        self.token_ids[curr_idx:curr_idx + len(token_ids)] = token_ids  
        # 更新当前逻辑块中tokens的数量  
        self.num_tokens += len(token_ids)  
  
    def get_token_ids(self) -> List[int]:  
        """获取当前逻辑块中所有被装满的位置的token_ids"""  
        return self.token_ids[:self.num_tokens]  
  
    def get_last_token_id(self) -> int:  
        """获取当前逻辑块所所有被装满的位置的最后一个token_id"""  
        assert self.num_tokens > 0  
        return self.token_ids[self.num_tokens - 1]  

关于逻辑块,我们已在[源码解读2]的2.3(2)中详细介绍过,它是Sequence实例(seq)下维护的一个属性。我们也提过,在vLLM代码实现中:每个seq维护自己的一份逻辑块列表,BlockManager中的self.block_tables(形式如:{seq_id: List[PhysicalBlock]})则记录者每个seq下的物理块列表

通过seq这个中介,维护起“逻辑块->物理块”的映射

【4】UncachedBlockAllocator

本文我们先来看较为简单的非缓存式BlockAllocator的实现。

4.1 在调度器中,什么时候会用到BlockAllocator

在[调度器策略]的讲解中,我们明确了非常重要的一点:在vllm的1个推理阶段,所有的seq_group要么一起做prefill,要么一起做decode。这也意味着,某次调度的结果,要么全部来自waiting队列(等待做prefill的),要么全部来自running或者running + swapped队列(等待做decode的)。

4.2 为waiting队列中的seq_group分配prefill需要的物理块

如上图,当我们准备从waiting队列中调度seq_group时,我们会依次做两件事:

  • 调用self.block_manager.can_allocate(seq_group)方法,判断当前gpu上是否有充足的空间,能为当下这seq_group的prefill阶段分配充足的物理块,用于装其KV Cache(细节我们在源码解读2中已讲过,这里不再赘述

  • 一旦我们认为当下空间充足,则调用self._allocate(seq_group)方法,为waiting队列中的这个seq_group实际分配物理块,这时我们就会运用到BlockAllocator,并且BlockAllocator的类型不同(即是否做prefix caching),allocate的方法也会不同。

所以现在,我们就来看 self._allocate(seq_group)函数(如何为waiting队列中的seq_group分配物理块做prefill)

self._allocate(seq_group)的入口函数如下(一切尽在注释中):

    # vllm/core/scheduler.py  
    def _allocate(self, seq_group: SequenceGroup) -> None:  
        # ==============================================================  
        # block_manager为当前seq_group分配物理块  
        # ==============================================================  
        self.block_manager.allocate(seq_group)  
  
        # ==============================================================  
        # 当前seq_group状态改为running  
        # ==============================================================  
        for seq in seq_group.get_seqs(status=SequenceStatus.WAITING):  
            seq.status = SequenceStatus.RUNNING

接下来我们看self.block_manager.allocate(seq_group)实现,如前文所说,本文我们解读的是BlockSpaceManagerV1,所以我们就去这个class的顶一下看allocate方法(一切尽在注释中)。

# vllm/core/block_manager_v1.py  
class BlockSpaceManagerV1(BlockSpaceManager):  
    """Manages the mapping between logical and physical token blocks."""  
  
    def __init__(  
        self,  
        block_size: int, # 每个block的槽位大小,默认为16  
        num_gpu_blocks: int, # 当前gpu上最多能分配的block数量  
        num_cpu_blocks: int, # 当前cpu上,用于做swap的内存中,最多能分配的block数量  
        watermark: float = 0.01, # 内存交换的水位线(阈值)  
        sliding_window: Optional[int] = None,  # 滑动窗口的大小  
        enable_caching: bool = False, # 是否需要做prefix caching  
    ) -> None:  
  
        self.block_size = block_size  
        self.num_total_gpu_blocks = num_gpu_blocks  
        self.num_total_cpu_blocks = num_cpu_blocks  
  
        if enable_caching and sliding_window is not None:  
            raise NotImplementedError(  
                "Sliding window is not allowed with prefix caching enabled!")  
  
        self.block_sliding_window = None  
        if sliding_window is not None:  
            assert sliding_window % block_size == 0, (sliding_window,  
                                                      block_size)  
            self.block_sliding_window = sliding_window // block_size  
  
        self.watermark = watermark  
        assert watermark >= 0.0  
  
        self.enable_caching = enable_caching  
  
        # ===========================================================================  
        # 水位线block数量:理解成一个阈值,这个阈值决定是否要给当前seq分配block  
        # 设置水位线block的目的是不要一下打满设备中的物理块,留一些buffer,避免后续频繁地发生swap  
        # ===========================================================================  
        self.watermark_blocks = int(watermark * num_gpu_blocks)  
  
        # ===========================================================================  
        # 根据是否做了prefix caching限制,来选择不同的allocator  
        # ===========================================================================  
        if self.enable_caching:  
            logger.info("Automatic prefix caching is enabled.")  
            self.gpu_allocator = CachedBlockAllocator(Device.GPU, block_size,  
                                                      num_gpu_blocks)  
            self.cpu_allocator = CachedBlockAllocator(Device.CPU, block_size,  
                                                      num_cpu_blocks)  
        else:  
            self.gpu_allocator = UncachedBlockAllocator(  
                Device.GPU, block_size, num_gpu_blocks)  
            self.cpu_allocator = UncachedBlockAllocator(  
                Device.CPU, block_size, num_cpu_blocks)  
          
        # ===========================================================================  
        # 创建block_tables字典,形式如{seq_id: block_table}, 记录每一个序列对应的block table  
        # ===========================================================================  
        self.block_tables: Dict[int, BlockTable] = {}  
  
    def can_allocate(self, seq_group: SequenceGroup) -> AllocStatus:  
        """  
        确实是否可以给这个seq_group分配物理块,返回结果有三种情况:  
        - AllocStatus.NEVER:不分配;  
        - AllocStatus.OK:可以分配;  
        - AllocStatus.LATER:延迟分配  
        在源码解读2中我们详细讲过这个方法,这里不赘述  
        """  
        ...  
  
  
    def allocate(self, seq_group: SequenceGroup) -> None:  
        """  
        为当前seq_group分配物理块做prefill  
        """  
        # ==========================================================================  
        # NOTE: vllm中有一条重要假设:一个seq_group内的所有seq都共享一个prompt  
        #       而我们现在正是要对这个prompt分配物理块。  
        # 复习一下,waiting队列中所有的seq_group都没做过prefill,因此每个seq_group下面  
        # 只有1条seq,这个seq即位prompt本身,所以我们取[0]即可拿出这个prompt  
        # ==========================================================================  
        seq = seq_group.get_seqs(status=SequenceStatus.WAITING)[0]  
  
        # ==========================================================================  
        # 计算该seq的逻辑块数量  
        # (prefill阶段,有多少个逻辑块,就应该分配多少个物理块)  
        # ==========================================================================  
        num_prompt_blocks = len(seq.logical_token_blocks)  
  
        # ==========================================================================  
        # 为该seq分配物理块,List[PhysicalTokenBlock]  
        # ==========================================================================  
        block_table: BlockTable = []  
        # 遍历该seq的所有逻辑块  
        for logical_idx in range(num_prompt_blocks):  
            # ==========================================================================  
            # 如果block的滑动窗口长度不为空(可暂时忽略不看)  
            # ==========================================================================  
            if (self.block_sliding_window is not None  
                    and logical_idx >= self.block_sliding_window):  
                block = block_table[logical_idx % self.block_sliding_window]  
                # Set the reference counts of the token blocks.  
                block.ref_count = seq_group.num_seqs()  
              
            # ==========================================================================  
            # 如果做了prefix caching,即使用的是CachedBlockAllocator  
            # (是下篇要讲解的重点,这里我们用的是UncachedBlockAllocator,所以可忽略不看)  
            # ==========================================================================  
            elif self.enable_caching:  
                block = self.gpu_allocator.allocate(  
                    seq.hash_of_block(logical_idx),  
                    seq.num_hashed_tokens_of_block(logical_idx))  
            # ==========================================================================  
            # 其余情况(即UncachedBlockAllocator对应的情况)  
            # ==========================================================================  
            else:  
                # 从空闲物理块中取一块出来,并令其ref_count = 1(表示有1个逻辑块引用它了)  
                # 相关代码讲解见下  
                block = self.gpu_allocator.allocate()  
                # 由于seq_group下的所有seq共享一个prompt,  
                # 所以进一步令物理块的ref_count = num_seqs  
                # (表示这些seqs的逻辑块都引用它了)  
                block.ref_count = seq_group.num_seqs()  
              
            block_table.append(block)  
  
        # ==========================================================================  
        # prefill阶段,这个seq_group下所有的seq共享一个prompt,也即共享这个prompt代表的物理块  
        # ==========================================================================  
        for seq in seq_group.get_seqs(status=SequenceStatus.WAITING):  
            self.block_tables[seq.seq_id] = block_table.copy()  
       
     # ... (该class下的其它方法,暂时略过)  

那现在我们再进一步看下上面代码中block = self.gpu_allocator.allocate()的实现(一切尽在注释中):

# vllm/core/block_manager_v1.py  
class UncachedBlockAllocator(BlockAllocatorBase):  
    """Manages free physical token blocks for a device.  
  
    The allocator maintains a list of free blocks and allocates a block when  
    requested. When a block is freed, its reference count is decremented. If  
    the reference count becomes zero, the block is added back to the free list.  
    """  
  
    def __init__(  
        self,  
        device: Device,  
        block_size: int,  
        num_blocks: int,  
    ) -> None:  
        self.device = device # 设备:cpu/gpu  
        self.block_size = block_size # 该设备上每个物理块的槽位数,默认为16  
        self.num_blocks = num_blocks # 该设备上留给KV cache的总物理块数量  
  
        # =================================================================  
        # 初始化所有物理块  
        # self.free_blocks:List[PhysicalTokenBlock], 用于跟踪该设备上所有  
        #                   未被使用过的物理块  
        # =================================================================  
        self.free_blocks: BlockTable = []  
        for i in range(num_blocks):  
            # vllm/vllm/block.py  
            # 定义物理块  
            block = PhysicalTokenBlock(device=device,  
                                       block_number=i,  
                                       block_size=block_size,  
                                       block_hash=-1,  
                                       num_hashed_tokens=0)  
            self.free_blocks.append(block)  
  
    def allocate(self,  
                 block_hash: Optional[int] = None,  
                 num_hashed_tokens: int = 0) -> PhysicalTokenBlock:  
        if not self.free_blocks:  
            raise ValueError("Out of memory! No free blocks are available.")  
        block = self.free_blocks.pop()  
        block.ref_count = 1 # 该物理块首次有逻辑块引用了,所以ref_count=1  
        return block  
  
    def free(self, block: PhysicalTokenBlock) -> None:  
        """  
        释放一条seq对应的物理块  
        即将对应物理块的引用-1,如果此时引用数量为0,说明对应物理块完全自由了,  
        需要再将其放入自由物理块列表中  
        """  
        if block.ref_count == 0:  
            raise ValueError(f"Double free! {block} is already freed.")  
        block.ref_count -= 1  
        if block.ref_count == 0:  
            self.free_blocks.append(block)  
  
    def get_num_free_blocks(self) -> int:  
        return len(self.free_blocks)  
  
    def contains_block(self, block_hash: int) -> bool:  
        raise NotImplementedError(  
            "Invalid codepath for uncached block allocator.")  
  
    def update_hash(self, block_hash: int, block: PhysicalTokenBlock):  
        raise NotImplementedError(  
            "Invalid codepath for uncached block allocator.")  

好,整个过程代码注释已经说得非常清楚了,这里再稍微总结下:

#waiting队列中的每个seq_group都还未经历过prefill阶段,因此每个seq_group下只有1个seq,这个seq即为prompt

#在使用UncachedBlockAllocator为wating队列中的某个seq_group分配物理块时,我们就是在对初始的这个prompt分配物理块。所以这个prompt有多少个逻辑块,我们就分配多少个可用的空闲物理块,同时注意更新物理块的ref_count。

你一定发现了,这里我们做的只是给定一种“物理块的分配方案”,我们只是在制定这个seq_group可以使用哪些物理块,但并没有实际往物理块中添加数据!“添加数据”这一步留到这1步推理实际开始时,由CacheEngine按照这个方案,往物理块中实际添加KV Cache。这个我们留在再后面的系列讲解。

]\

接下来我们考虑为running/swapped队列中的seq_group分配decode需要的物理块。

对于每个seq_group,在上1个推理阶段,我们对它下面的每个seq都产出了1个token。所以在这个推理阶段,我们判断能否为这些seq_group分配物理块时,我们也会分成两步:

调用self.block_manager.can_append_slot(seq_group)方法 ,判断是否至少能为这个seq_group下的每个seq都分配1个空闲物理块。如果可以则认为能调度这个seq_group(原因和代码分析我们在源码解读2中细讲过,这里不赘述)。

调用self._append_slot(seq_group, blocks_to_copy)方法 ,实际分配物理块。我们马上来看细节。

调用入口(一切尽在注释中):

    # vllm/core/scheduler.py  
    def _append_slot(  
        self,  
        seq_group: SequenceGroup,  
        blocks_to_copy: Dict[int, List[int]], # {旧物理块id:[由旧物理块copy-on-write而来的新物理块id]}  
    ) -> None:  
        # =============================================================================  
        # 遍历这个seq_group中状态为running的所有seq  
        # =============================================================================  
        for seq in seq_group.get_seqs(status=SequenceStatus.RUNNING):  
            # ========================================================================  
            # 为这个seq分配物理块,代码细节见下  
            # ret = None时,说明可以继续使用物理块的空槽位,不需要新分配物理块  
            # ret部位空时的结果为:(last_block.block_number, new_block.block_number)  
            # 前者表示源物理块,后者表示copy-on-write而来的物理块  
            # (有疑惑不要紧,下文我们马上来看代码细节)  
            # ========================================================================  
            ret = self.block_manager.append_slot(seq)  
            # ========================================================================  
            # ret非None,说明采用了copy-on-write机制(参见原理篇讲解)  
            # 这时我们要记录copy-on-write相关的映射关系  
            # ========================================================================  
            if ret is not None:  
                src_block, dst_block = ret  
                # {旧物理块id:[由旧物理块copy-on-write而来的新物理块id]}  
                if src_block in blocks_to_copy:  
                    blocks_to_copy[src_block].append(dst_block)  
                else:  
                    blocks_to_copy[src_block] = [dst_block]

来看self.block_manager.append_slot(seq)细节(一切尽在注释中):

# vllm/core/block_manager_v1.py  
class BlockSpaceManagerV1(BlockSpaceManager):  
    """Manages the mapping between logical and physical token blocks."""  
  
    def __init__(  
        self,  
        block_size: int, # 每个block的大小  
        num_gpu_blocks: int, # 当前gpu上最多能分配的block数量  
        num_cpu_blocks: int, # 当前cpu上,用于做swap的内存中,最多能分配的block数量  
        watermark: float = 0.01, # 内存交换的水位线(阈值)  
        sliding_window: Optional[int] = None,  # 滑动窗口的大小  
        enable_caching: bool = False, # 是否需要做prefix caching(目前暂时不支持,所以都设为False)  
    ) -> None:  
  
        self.block_size = block_size  
        self.num_total_gpu_blocks = num_gpu_blocks  
        self.num_total_cpu_blocks = num_cpu_blocks  
  
        if enable_caching and sliding_window is not None:  
            raise NotImplementedError(  
                "Sliding window is not allowed with prefix caching enabled!")  
  
        self.block_sliding_window = None  
        if sliding_window is not None:  
            assert sliding_window % block_size == 0, (sliding_window,  
                                                      block_size)  
            self.block_sliding_window = sliding_window // block_size  
  
        self.watermark = watermark  
        assert watermark >= 0.0  
  
        self.enable_caching = enable_caching  
  
        # ===========================================================================  
        # 水位线block数量:理解成一个阈值,这个阈值决定是否要给当前seq分配block  
        # 设置水位线block的目的是不要一下打满设备中的物理块,留一些buffer,避免后续频繁地发生swap  
        # ===========================================================================  
        self.watermark_blocks = int(watermark * num_gpu_blocks)  
  
        # ===========================================================================  
        # 根据是否做了prefix caching限制,来选择不同的allocator  
        # ===========================================================================  
        if self.enable_caching:  
            logger.info("Automatic prefix caching is enabled.")  
            self.gpu_allocator = CachedBlockAllocator(Device.GPU, block_size,  
                                                      num_gpu_blocks)  
            self.cpu_allocator = CachedBlockAllocator(Device.CPU, block_size,  
                                                      num_cpu_blocks)  
        else:  
            self.gpu_allocator = UncachedBlockAllocator(  
                Device.GPU, block_size, num_gpu_blocks)  
            self.cpu_allocator = UncachedBlockAllocator(  
                Device.CPU, block_size, num_cpu_blocks)  
          
        # ===========================================================================  
        # 创建block_tables字典,形式如{seq_id: block_table}, 记录每一个序列对应的block table  
        # ===========================================================================  
        self.block_tables: Dict[int, BlockTable] = {}  
  
  
    def can_append_slot(self, seq_group: SequenceGroup) -> bool:  
        """  
        对于这个seq_group,我们检查对于其中的每一个seq,  
        是否能至少分配一个空闲物理块给它  
        相关讲解在源码解读2中详细说过,不再赘述  
        """  
        # Simple heuristic: If there is at least one free block  
        # for each sequence, we can append.  
        num_free_gpu_blocks = self.gpu_allocator.get_num_free_blocks()  
        num_seqs = seq_group.num_seqs(status=SequenceStatus.RUNNING)  
        return num_seqs <= num_free_gpu_blocks  
  
    def _promote_last_block(  
        self,  
        seq: Sequence,  
        last_block: PhysicalTokenBlock,  
    ) -> PhysicalTokenBlock:  
        assert self.enable_caching  
  
        # Compute a new hash for the block so that it can be shared by other  
        # Sequences  
        new_hash = seq.hash_of_block(len(seq.logical_token_blocks) - 1)  
  
        # if new_hash is already in the cached table, then free last_block  
        # and return the cached version  
        if self.gpu_allocator.contains_block(new_hash):  
            self.gpu_allocator.free(last_block)  
            return self.gpu_allocator.allocate(new_hash)  
        else:  
            self.gpu_allocator.update_hash(new_hash, last_block)  
            return last_block  
  
    def _is_last_block_full(  
        self,  
        seq: Sequence,  
    ) -> bool:  
        """  
        检查当前这最后一个物理块是不是已经装满了  
        """  
        # 获取该seq的token数量  
        token_ids_len = len(seq.data.get_token_ids())  
        # 如果seq的token数量大于0,且token数量能被block整除,说明当前这最后一个物理块是满的  
        return token_ids_len > 0 and token_ids_len % seq.block_size == 0  
  
    def _maybe_promote_last_block(  
        self,  
        seq: Sequence,  
        last_block: PhysicalTokenBlock,  
    ) -> PhysicalTokenBlock:  
        # ===================================================================  
        # 检查当前这最后一个物理块是否满了,如果是:  
        # ===================================================================  
        if self._is_last_block_full(seq):  
            return self._promote_last_block(seq, last_block)  
        else:  
            return last_block  
  
    def _allocate_last_physical_block(  
        self,  
        seq: Sequence,  
    ) -> PhysicalTokenBlock:  
        """  
        我们在想添加新的物理块之前,调用这个函数,来判断是不是真得有必要添加一个物理块  
        """  
  
        # ===================================================================  
        # 如果不使用prefix caching,就直接分配物理块(看到这里就可以,下面的不用看)  
        # ===================================================================  
        if not self.enable_caching:  
            return self.gpu_allocator.allocate()  
          
        # ===================================================================  
        # 使用prefix caching(下篇要讲解的重点,这里可以忽略)  
        # ===================================================================  
        block_hash: Optional[int] = None  
        if (self._is_last_block_full(seq)):  
            block_hash = seq.hash_of_block(len(seq.logical_token_blocks) - 1)  
        num_hashed_tokens = seq.num_hashed_tokens_of_block(  
            len(seq.logical_token_blocks) - 1)  
  
        new_block = self.gpu_allocator.allocate(block_hash, num_hashed_tokens)  
  
        if block_hash is None:  
            assert new_block.ref_count == 1  
        return new_block  
  
    def append_slot(  
        self,  
        seq: Sequence,  
    ) -> Optional[Tuple[int, int]]:  
        """  
        为这个seq中的新token分配一个物理槽位  
        """  
        # ==============================================================  
        # 读取这个seq的逻辑块,List[LogicalTokenBlock]  
        # ==============================================================  
        logical_blocks = seq.logical_token_blocks  
        # ==============================================================  
        # 读取这个seq的物理块,List[PhysicalTokenBlock]  
        # ==============================================================  
        block_table = self.block_tables[seq.seq_id]  
          
        # ==============================================================  
        # 如果物理块数量 < 逻辑块数量(说明此时需要分配新的物理块了)  
        # 注:上1个推理阶段完毕后,seq的逻辑块更新了(把最新生成的这个token装进去了)  
        #     但物理块还没更新  
        # ==============================================================  
        if len(block_table) < len(logical_blocks):  
            # ==============================================================  
            # (需要声明物理块只允许比逻辑块少1块)  
            # ==============================================================  
            assert len(block_table) == len(logical_blocks) - 1  
  
            # ==============================================================  
            # 如果使用滑动窗口时的逻辑(可暂时忽略不看)  
            # ==============================================================  
            if (self.block_sliding_window  
                    and len(block_table) >= self.block_sliding_window):  
                # reuse a block  
                block_table.append(block_table[len(block_table) %  
                                               self.block_sliding_window])  
            # ==============================================================  
            # 其余情况,直接分配一个新的物理块给当前序列  
            # ==============================================================  
            else:  
                # 如果是UnCachedBlockAllocator,就直接分配一个新的空闲物理块  
                new_block = self._allocate_last_physical_block(seq)  
                block_table.append(new_block)  
                return None  
  
        # ==============================================================  
        # 如果物理块数量==逻辑块数量:  
        # ==============================================================  
        last_block = block_table[-1] # 取出最后一个物理块  
        assert last_block.device == Device.GPU # 声明必须是gpu物理块  
          
        # ==============================================================  
        # 如果最后一个物理块的引用数量为1(只有1个逻辑块引用它)  
        # (也就是只有当前这个seq在用它)  
        # ==============================================================  
        if last_block.ref_count == 1:  
            # ==============================================================  
            # 如果你是在做prefix caching(暂时不看,下篇再细讲)  
            # ==============================================================  
            if self.enable_caching:  
                maybe_new_block = self._maybe_promote_last_block(  
                    seq, last_block)  
                block_table[-1] = maybe_new_block  
            # ==============================================================  
            # 不用prefix caching,此时我们不需要添加新的物理块,所以返回None  
            # ==============================================================  
            return None  
        # ==============================================================  
        # 如果最后一个物理块的引用数量为 > 1 (有别的逻辑块在引用它)  
        # (也就是有别的seq在用它)  
        # ==============================================================  
        else:  
            # ==============================================================  
            # The last block is shared with other sequences.  
            # Copy on Write: Allocate a new block and copy the tokens.  
            # 触发copy-on-write机制,分配一个新的物理块。机制相关的解释见原理篇讲解  
            # ==============================================================  
            new_block = self._allocate_last_physical_block(seq)  
            block_table[-1] = new_block  
            # 从该seq的block_table中释放掉旧的物理块  
            # 也即该物理块ref_count -= 1,如果-=1后ref_count=0,说明该物理块彻底自由了,  
            # 此时可以把它添加进自由物理块的列表中(细节留给大家自己看源码,不难)  
            self.gpu_allocator.free(last_block)  
              
            return last_block.block_number, new_block.block_number  

如果在阅读上述代码中,你感觉有些迷惑,建议先看一下[原理篇]中的相关相关讲解。动手画画图,帮助理清过程。

同样,在这里我们依然要强调,调度器中只是给出了物理块的分配方案,并没有实际往物理块中添加数据,添加数据这一步是CacheEngine照着这个方案来实际操作的,这个我们放在后面的文章中讲解。

恭喜你已经了解了非缓存式物理块管理器(UncachedBlockAllocator)的全部细节!在块管理器的下篇中,我们将来看一个更有意思,代码上也更有难度的缓存式块管理器CachedBlockAllocator,一起来看看vllm在论文中说的prefix caching是如何实现的。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值