近日训练营的一位复旦大学的女硕士告诉我,上周去参加某厂大模型岗复试,面试官问了 LongLoRA 微调。最终咱们这位复旦女硕士还是被这小小的问题给难住痛失 offer。那么这 LongLoRA 微调到底是啥呢?今天就来给大家好好讲讲。
01
面试官心理分析
首先面试官问这个问题呢,其实主要是想考你 3 点内容。
第一, 你知不知道 LongLoRA 微调,有没有看过相关的 paper。如果你听都没有听过,那显然这道题就不用继续了。
第二, LongLoRA 微调主要解决的是什么样的问题,为什么要提出这种微调策略,是基于什么样的背景。
第三, 它是怎么解决的问题,展开详细讲讲。
好,那接下来我们就沿着面试官的心理预期,来回答一下这道题目。
02
面试题解析
首先说下背景,LongLoRA 是港中文和 MIT 在 23 年发表的一篇 paper,主要是为了解决长上下文的注意力机制计算量很大的问题。
我们知道,现在大模型的上下文是越做越长,像 OpenAI GPT4-Turbo 支持到了 128K,Kimi 甚至支持到了 200K 的长度。
长文本影响最大的就是 self-attention ,因为它的显存占用和计算量是随着长度平方变化的。
所以这里我们就答出了第一个得分点,LongLoRA 解决了一个什么样的问题,基于什么样的背景和动机。
其实面试跟大家平时考试答题一样,也有得分点,不是说你答的越多就越好,重要的是答到点子上。
面试时间就那么一两个小时,你长篇大论一堆,面试官是没有那么多耐心听的,反而给面试减分。
好,我们接着来看。
那 LongLoRA 怎么解决的这个问题呢?
在回答这类问题的时候,建议大家先整体概括,再展开表述,同时尽量结合画图,这样思路更加清晰。
比如这里,先整体概括一下,LongLoRA 的原则是,虽然在推理过程中需要密集的全局注意力,但通过稀疏的局部注意力可以有效且高效地微调模型。
具体来说呢,LongLoRA 在微调期间延长了上下文长度,同时使用 Lora 方法保持了高性能和低复杂性,它提出了 shifted sparse attention 的微调方案,我们简称为 S2-Attention。
在训练阶段使用 S2-Attention,推理时用全局注意力。
我们看下面这张图,S2-Attention 在微调阶段,使用的是局部注意力,而不是全局注意力。
也就是将输入文档分解为几个不同的组,并在每个组中分别应用注意力机制,大家注意看图中的 Pattern1。
那这种方式有什么好处呢?
好处就是它能够在资源占用不多的情况下拓展长度。
那缺点呢?
由于不同组之间缺乏信息交换,随着长度增大,会导致部分信息的丢失。因此 S2-Attention 又引入了组大小一半的移位操作,确保相邻组之间顺利的信息交换。
我们看图中的 Pattern 2,那这个改进有助于模型在文本开头和结尾之间顺利交换信息,提高了模型的稳定性。
说的大白话一点,就是对每个 token 而言,真正跟它有一定关联程度的,绝大部分都在相近的区域内,不需要看太远,但为了保持前后注意力的连贯性,所以加上了移位操作。
如何学习AI大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。